FLINT: Fast Library for Number Theory

William B. Hart and David Harvey

September 14, 2007

1 Introduction

FLINT is a C library of functions for doing number theory. It is highly optimised and can be compiled
on numerous platforms. FLINT also has the aim of providing support for multicore and multiprocessor
computer architectures.

FLINT is currently maintained by William Hart of Warwick University in the UK and David Harvey of
Harvard University in the US.

As of version 1.0, FLINT compiles on and supports 32 and 64 bit x86 processors, the G5 and Alpha
processors.

FLINT is supplied as a set of modules, mpz_poly, fmpz_poly, etc., each of which can be linked to a
C program that wishes to make use of their functionality. There are some dependencies amongst the
modules, and these are listed in the introductions to the relevant modules below.

All of the functions in FLINT have a corresponding test function provided in the appropriately named
module in the test directory. E.g: all the functions in mpz_poly. c have test functions in mpz_poly-test.c.

2 The mpz_poly module

The mpz_poly_t data type represents elements of Z[x] by an array of mpz_t’s. It provides routines for
memory management, basic arithmetic, and conversions to/from other types.

Unless otherwise specified, all functions in this section permit aliasing between their input and output
arguments.

2.1 Simple example

The following example computes the square of the polynomial 523 — 1.

#include "mpz_poly.h"

mpz_poly_t x, ¥y;
mpz_poly_init (x);
mpz_poly_init (y);
mpz_poly_set_coeff_ui(x, 3, 5);
mpz_poly_set_coeff_si(x, 0, -1);
mpz_poly_mul(y, x, x);

mpz_poly_print(x); printf("\n");
mpz_poly_print(y); printf ("\n");
mpz_poly_clear(x);
mpz_poly_clear (y);

Output is:

4 -1 005
7 100 -10 0 0 25

2.2 Definition of mpz_poly_t

The mpz_poly_t type is actually a typedef for an array of length 1 of mpz_poly_struct. This permits
passing parameters of type mpz_poly_t ‘by reference’.

The mpz_poly_struct struct has three members:
e mpz_t* coeffs. An array of mpz_t’s of length alloc. All of them are mpz_init’d.

e unsigned long alloc. Length of coeffs. Always alloc >= 1.

e unsigned long length. The current length of the polynomial. That is, forn < length, the coeffi-
cient of 2" is coeffs[n], and forn >= length, the coefficient of ™ is zero. Always length <= alloc.
If length == 0 then this is the zero polynomial.

An mpz_poly_t is said to be normalised if either length == 0, or if coeffs[length-1] is nonzero. All
mpz_poly_blah() functions expect their inputs to be normalised, and unless other specified they produce
output that is normalised. If you modify the coefficients yourself, you must ensure that the polynomial
is subsequently normalised (for example by using mpz_poly_normalise()).

All mpz_poly_t’s are allocated on the heap. The reason we don’t bother with stack storage is that most
of the memory allocation overhead for mpz_poly_t is in the coefficients anyway, and providing both stack
and heap allocation would just make things unnecessarily complicated.

2.3 Comparison with fmpz_poly_t
Advantages of mpz_poly_t over fmpz_poly_t are:

e GMP’s mpz functions may be used directly on the coefficients.

o If the coefficients vary a lot in size, the memory usage will be more efficient. (In fact it might be
completely impractical to use fmpz_poly_t for such a polynomial.)

Disadvantages compared to fmpz_poly_t are:

e fmpz_poly_t is more efficient (in both time and space) for dense polynomials with relatively small,
equally-sized coeflicients, because it has much less memory management overhead.

2.4 Initialisation and memory management
void mpz_poly_init (mpz_poly_t poly)

Initialises an mpz_poly_t object. This function must be called before using the polynomial.
The initial allocated size is set to 1. The length is set to zero, so this is the zero polynomial.

This function should not be used twice on the same polynomial without an intervening
mpz_poly_clear(); this will cause memory leaks.

void mpz_poly_clear (mpz_poly_t poly)

Frees the resources associated with an mpz_poly_t object. The coefficients are mpz_cleared
and the polynomial object becomes unusable. To use it again, mpz_poly_init() must be
called.

void mpz_poly_init2(mpz_poly_t poly, unsigned long alloc)

Same as mpz_poly_init (), but with alloc coefficients initially allocated. Must have alloc >= 1.

void mpz_poly_realloc(mpz_poly_t poly, unsigned long alloc)

Reallocates the array of coefficients to length alloc. Must have alloc >= 1. The value of
the polynomial is preserved as far as possible (i.e. up to at most alloc coefficients).

void mpz_poly_ensure_alloc(mpz_poly_t poly, unsigned long alloc)

Ensures that at least alloc coefficients are allocated in poly, by increasing the number of
allocated coefficients if necessary. If more coefficients are required, the number of allocated
coefficients is at least doubled. The value of the polynomial is preserved.

2.5 Setting/retrieving coefficients

mpz_t* mpz_poly_get_coeff_ptr(mpz_poly_t poly, unsigned long n)

Returns a pointer to the coefficient of 2™ in poly, or NULL if n is beyond the current length
of the polynomial.

void mpz_poly_get_coeff (mpz_t c, mpz_poly_t poly, unsigned long n)

Copies the coefficient of 2™ in poly into c. If n is beyond the current length of the polynomial,
c is set to zero.

unsigned long mpz_poly_get_coeff_ui(mpz_poly_t poly, unsigned long n)

Returns the absolute value of the coefficient of 2™ in poly as an unsigned long. If it doesn’t
fit, only the least significant bits are returned. (See GMP’s mpz_get_ui () function.) If n is
beyond the current length of the polynomial, the return value is zero.

long mpz_poly_get_coeff_si(mpz_poly_t poly, unsigned long n)

Returns the coefficient of 2™ in poly as a long. If it doesn’t fit, the return value probably
doesn’t mean much (but see GMP’s mpz_get_si() function). If n is beyond the current
length of the polynomial, the return value is zero.

mpz_t* _mpz_poly_get_coeff_ptr(mpz_poly_t poly, unsigned long n)

void _mpz_poly_get_coeff(mpz_t c, mpz_poly_t poly, unsigned long n)
unsigned long _mpz_poly_get_coeff_ui(mpz_poly_t poly, unsigned long n)
long _mpz_poly_get_coeff_si(mpz_poly_t poly, unsigned long n)

These are the same as the functions above, but they are inlined, and do no bounds checking.
If n is beyond the current length of the polynomial, the result is undefined.

void mpz_poly_set_coeff (mpz_poly_t poly, unsigned long n, mpz_t c)

void mpz_poly_set_coeff_ui(mpz_poly_t poly, unsigned long n,
unsigned long c)

void mpz_poly_set_coeff_si(mpz_poly_t poly, unsigned long n, long c)

Sets the coefficient of 2™ in poly to c. If n is beyond the current length of the polynomial,
the polynomial is extended and reallocated appropriately.

void _mpz_poly_set_coeff (mpz_poly_t poly, unsigned long n, mpz_t c)

void _mpz_poly_set_coeff_ui(mpz_poly_t poly, unsigned long n,
unsigned long c)

void _mpz_poly_set_coeff_si(mpz_poly_t poly, unsigned long n, long c)

These are the same as the functions above, but they are inlined, and do no bounds checking.
If n is beyond the current length of the polynomial, the result is undefined. Additionally,
they do not ensure that the result is normalised.

2.6 String conversions and I/0

The functions in this section are not intended to be particularly fast. They are intended mainly as a
debugging aid.

All of the functions use the same string representation of polynomials. It is given by a sequence of integers,
in decimal notation, separated by whitespace. The first integer gives the length of the polynomial; the
remaining length integers are the coefficients. For example 523 — 2 + 1 is represented by the string
“4 1 -1 0 57, and the zero polynomial is represented by “0”.

int mpz_poly_from_string(mpz_poly_t poly, char* s)

Converts s into a polynomial, stored in poly. The return value is 1 if the conversion succeeded.
The return value is zero if the string did not represent a valid polynomial, in which case poly
will be in a legal state, but with an undefined value.

char* mpz_poly_to_string(mpz_poly_t poly)

Converts the polynomial to a string and returns a character buffer that was allocated by
malloc. You should call free when the string is no longer needed.

void mpz_poly_print (mpz_poly_t poly)

Prints the given polynomial to standard output.

void mpz_poly_fprint (mpz_poly_t poly, FILE*x f)

Prints the given polynomial to the given stream.

int mpz_poly_read(mpz_poly_t poly)

Reads a string from standard input and converts it to a polynomial. Return value has the
same meaning as for mpz_poly_from_string().

int mpz_poly_fread(mpz_poly_t poly, FILEx*x f)

Reads a string from the given stream and converts it to a polynomial. Return value has the
same meaning as for mpz_poly_from_string().

2.7 Length and degree

unsigned long mpz_poly_length(mpz_poly_t poly)

Return the polynomial’s length.

long mpz_poly_degree(mpz_poly_t poly)

Returns the polynomial’s degree, which is defined to be length - 1. In particular the degree
of the zero polynomial is —1.

void mpz_poly_normalise (mpz_poly_t poly)

Normalises the polynomial; that is, reduces its length until either the length is zero, or the

coefficient of z'*"sth—1 ig nongzero.

int mpz_poly_normalised(mpz_poly_t poly)

Returns a nonzero value if the polynomial is normalised.

void mpz_poly_truncate (mpz_poly_t res, mpz_poly_t poly,
unsigned long length)

Truncates poly to length length, puts result in res.

void mpz_poly_pad(mpz_poly_t poly, unsigned long length)

Ensures that the polynomial has length at least length, by zero-padding the polynomial if
necessary. The polynomial will not necessarily be normalised after this operation. The value
of the polynomial is preserved.

2.8 Assignment

void mpz_poly_set (mpz_poly_t res, mpz_poly_t poly)

Copies the value of poly into res.

void mpz_poly_zero(mpz_poly_t poly)

Sets poly to zero (by setting its length to zero).

void mpz_poly_swap(mpz_poly_t polyl, mpz_poly_t poly2)

Swaps the contents of polyl and poly2 by pointer swapping. This is much more efficient
than going via a temporary.

2.9 Conversions

void mpz_poly_to_fmpz_poly(fmpz_poly_t res, mpz_poly_t poly)

Converts poly into fmpz_poly_t format.

void fmpz_poly_to_mpz_poly(mpz_poly_t res, fmpz_poly_t poly)
Converts poly into mpz_poly_t format.

2.10 Comparison

int mpz_poly_equal (mpz_poly_t polyl, mpz_poly_t poly2)

Returns a nonzero value if polyl and poly2 are equal.

2.11 Addition/subtraction
void mpz_poly_add (mpz_poly_t res, mpz_poly_t polyl, mpz_poly_t poly2)

Sets res equal to polyl plus poly2.

void mpz_poly_sub(mpz_poly_t res, mpz_poly_t polyl, mpz_poly_t poly2)

Sets res equal to polyl minus poly2.

void mpz_poly_neg(mpz_poly_t res, mpz_poly_t poly)
Sets res equal to the negative of poly.

2.12 Shifting
void mpz_poly_lshift(mpz_poly_t res, mpz_poly_t poly, unsigned long k)

Sets res equal to poly times z*. If res is the same object as poly, this is done efficiently by
pointer swapping.

void mpz_poly_rshift(mpz_poly_t res, mpz_poly_t poly, unsigned long k)

Sets res equal to poly divided by z*, with the lower order terms discarded. If res is the
same object as poly, this is done efficiently by pointer swapping.

void mpz_poly_shift(mpz_poly_t res, mpz_poly_t poly, long k)

Sets res equal to poly multiplied by 2*, where the semantics are the same as mpz_poly_lshift ()
or mpz_poly_rshift (), depending on whether £ is non-negative or negative.

2.13 Scalar multiplication and division

void mpz_poly_scalar_mul (mpz_poly_t res, mpz_poly_t poly, mpz_t c)
void mpz_poly_scalar_mul_ui(mpz_poly_t res, mpz_poly_t poly,
unsigned long c)
void mpz_poly_scalar_mul_si(mpz_poly_t res, mpz_poly_t poly,
long c)

Sets res equal to poly times c.

void mpz_poly_scalar_div(mpz_poly_t res, mpz_poly_t poly, mpz_t c)

void mpz_poly_scalar_div_ui(mpz_poly_t res, mpz_poly_t poly,
unsigned long c)

void mpz_poly_scalar_div_si(mpz_poly_t res, mpz_poly_t poly, long c)

Sets res equal to poly divided by ¢. Rounding is towards zero (similar to the mpz_tdiv
family in GMP). If ¢ is zero then a division-by-zero is raised.

In the ui and si cases, in appropriate circumstances some precomputation is performed
which is then shared among the coefficients, so this routine will be faster than dividing each
coefficient by ¢ separately. Similar functionality is planned for the mpz_t case.

void mpz_poly_scalar_div_exact(mpz_poly_t res, mpz_poly_t poly,
mpz_t c)
void mpz_poly_scalar_div_exact_ui(mpz_poly_t res, mpz_poly_t poly,
unsigned long c)
void mpz_poly_scalar_div_exact_si(mpz_poly_t res, mpz_poly_t poly,
long c)

Sets res equal to poly divided by ¢, assuming that ¢ divides each coefficient exactly. If ¢
does not divide them, the result is undefined. If ¢ is zero then a division-by-zero is raised.

The remarks made above for mpz_poly_scalar_div regarding precomputation apply here
also.

void mpz_poly_scalar_mod(mpz_poly_t res, mpz_poly_t poly, mpz_t c)
void mpz_poly_scalar_mod_ui(mpz_poly_t res, mpz_poly_t poly,
unsigned long c)

Sets res equal to poly modulo ¢, that is, reduces each coefficient into the range [0, ¢). In the
mpz_t case, the sign of c is ignored.

The remarks made above for mpz_poly_scalar_div regarding precomputation apply here
also.

2.14 Polynomial multiplication

void mpz_poly_mul (mpz_poly_t res, mpz_poly_t polyl, mpz_poly_t poly2)

Sets res equal to polyl times poly2. An appropriate multiplication algorithm is selected
based on the degree and the maximum size of the coefficients of the input polynomials.

The automatic algorithm selection strategy is based on the assumption that the polynomials
are dense and have coefficients whose size does not vary too much. If this assumption is
not satisfied, the chosen algorithm may be inappropriate. For example, if the polynomials
represent the first few terms of the g-expansion of a modular form, then the coefficients might
grow quite rapidly, in which case mpz_poly_mul will probably choose an FFT-based algorithm
tuned for the largest coefficient; but the naive multiplication algorithm would probably do
much better. Another example: if the polynomial is very sparse, then quite possibly FLINT
is the wrong tool for the job, since it does not (yet) implement algorithms that can efficiently
multiply sparse polynomials.

void mpz_poly_mul_naive (mpz_poly_t res, mpz_poly_t polyl,
mpz_poly_t poly2)

Sets res equal to polyl times poly2, using the ‘naive’ (classical) algorithm.

void mpz_poly_mul_karatsuba(mpz_poly_t res, mpz_poly_t polyl,

mpz_poly_t poly2)

Sets res equal to polyl times poly2, using Karatsuba’s algorithm. This is asymptotically
faster than the naive algorithm, but not as fast as FFT-based methods.

void mpz_poly_mul_SS(mpz_poly_t res, mpz_poly_t polyl,

void

void
void
void
void
void

mpz_poly_t poly2)

Sets res equal to polyl times poly2, using a Schonhage-Strassen FFT algorithm [?].

This is asymptotically the fastest multiplication algorithm implemented in FLINT, and is used
for very large multiplications (several thousand words or higher). The underlying algorithm
is a Schonhage—Strassen FFT operating on a polynomial whose coefficients have about the
same number of bits as the degrees of the input polynomials (see the ZmodF_poly_t data
type). A modification of the truncated Fourier transform [?] is used to improve smoothness
of the running time.

To convert the original multiplication to a problem of this type, FLINT either packs co-
efficients together (in the case that the coefficients are initially too small compared to the
degree), or splits them apart (in the case that the coefficients are too large compared to
the degree). The first approach is similar to Kronecker segmentation, except that instead of
packing all the way into a single integer, we aim directly for the polynomial on which the
Schonhage—Strassen FFT operates. This was suggested independently by Paul Zimmerman
and David Harvey. The splitting approach for the other case is due to William Hart.

mpz_poly_mul_naive_KS(mpz_poly_t res, mpz_poly_t polyl,
mpz_poly_t poly2)

Sets res equal to poly1l times poly2, using a ‘naive Kronecker segmentation’ algorithm. This
function is provided for testing purposes only; it is never called by mpz_poly_mul (). It simply
packs the coefficients into a single large integer, and multiplies the integers using GMP. It is
asymptotically fast, and less likely to contain bugs than the other functions, as it is based on
very mature GMP code.

mpz_poly_sqr (mpz_poly_t res, mpz_poly_t poly)
mpz_poly_sqr_naive (mpz_poly_t res, mpz_poly_t poly)
mpz_poly_sqr_karatsuba(mpz_poly_t res, mpz_poly_t poly)
mpz_poly_sqr_SS(mpz_poly_t res, mpz_poly_t poly)
mpz_poly_sqr_naive_KS(mpz_poly_t res, mpz_poly_t poly)

These functions are the same as the multiplication functions given above, but specialised for
squaring. Note that the multiplication functions will automatically call the squaring versions
if they are passed two identical inputs.

2.15 Polynomial division

void mpz_poly_monic_inverse(mpz_poly_t res, mpz_poly_t poly,
unsigned long k)

Let n be the degree of poly, and assume that poly is monic. This function computes a monic
polynomial res of degree k such that

"t = res - poly + R,

where R has degree less than n. In other words it computes an approximate inverse of poly,
scaled by an appropriate power of x.

For sufficiently small k£ and sufficiently small input polynomials, this function uses a naive
division algorithm (see mpz_poly_monic_inverse_naive() below). For larger problems it
switches to a divide-and-conquer algorithm, and eventually a Newton iteration method.

void mpz_poly_pseudo_inverse (mpz_poly_t res, mpz_poly_t poly,
unsigned long k)

Let n be the degree of poly, and let d be the leading coefficient of poly (assumed nonzero).
This function computes a polynomial res of degree k such that

d* gk — res . poly + R,

where R has degree less than n. In other words it computes an approximate inverse of poly,
scaled by an appropriate power of x and d.

The algorithms used are similar to those described above for mpz_poly_monic_inverse(),
with appropriate modifications to handle d # 1.

void mpz_poly_monic_div(mpz_poly_t quot, mpz_poly_t polyl,
mpz_poly_t poly2)

This function divides polyl by poly2, assuming that poly2 is monic. That is, it computes a
polynomial quot such that
polyl = quot - poly2 + rem,

where the remainder rem has degree less than poly2.

void mpz_poly_pseudo_div(mpz_poly_t quot, mpz_poly_t polyl,
mpz_poly_t poly2)

This function pseudo-divides polyl by poly2. That is, let d be the leading coefficient of
poly2 (assumed nonzero). Let n and m be the degrees of polyl and poly2. This function
computes a polynomial quot such that

d" "™ 1polyl = quot - poly2 + rem,

where the remainder rem has degree less than poly2.

10

void mpz_poly_monic_rem(mpz_poly_t rem, mpz_poly_t polyl,
mpz_poly_t poly2)
void mpz_poly_pseudo_rem(mpz_poly_t rem, mpz_poly_t polyl,
mpz_poly_t poly2)
void mpz_poly_monic_div_rem(mpz_poly_t quot, mpz_poly_t rem,
mpz_poly_t polyl, mpz_poly_t poly2)
void mpz_poly_pseudo_div_rem(mpz_poly_t quot, mpz_poly_t rem,
mpz_poly_t polyl, mpz_poly_t poly2)

The same as the functions above, but compute the remainder, or the quotient and the re-
mainder.

void mpz_poly_monic_inverse_naive (mpz_poly_t res, mpz_poly_t poly,
unsigned long k)
void mpz_poly_pseudo_inverse_naive(mpz_poly_t res, mpz_poly_t poly,
unsigned long k)
void mpz_poly_monic_div_naive (mpz_poly_t quot, mpz_poly_t polyl,
mpz_poly_t poly2)
void mpz_poly_pseudo_div_naive(mpz_poly_t quot, mpz_poly_t polyl,
mpz_poly_t poly2)
void mpz_poly_monic_rem_naive (mpz_poly_t rem, mpz_poly_t polyl,
mpz_poly_t poly2)
void mpz_poly_pseudo_rem_naive(mpz_poly_t rem, mpz_poly_t polyl,
mpz_poly_t poly2)
void mpz_poly_monic_div_rem_naive(mpz_poly_t quot, mpz_poly_t rem,
mpz_poly_t polyl, mpz_poly_t poly2)
void mpz_poly_pseudo_div_rem_naive (mpz_poly_t quot, mpz_poly_t rem,
mpz_poly_t polyl, mpz_poly_t poly2)

The same as the functions above, but they always use a naive division algorithm.

2.16 GCD and extended GCD

void mpz_poly_content (mpz_t x, mpz_poly_t poly)

Computes the content of poly (the non-negative GCD of the coefficients) and stores it in x.
unsigned long mpz_poly_content_ui(mpz_poly_t poly)

Computes the content of poly, and returns it as an unsigned long. If it doesn’t fit, the least
significant bits are returned.

void mpz_poly_gcd(mpz_poly_t res, mpz_poly_t polyl, mpz_poly_t poly2)

void mpz_poly_xgcd(mpz_poly_t res, mpz_poly_t a, mpz_poly_t b,
mpz_poly_t polyl, mpz_poly_t poly2)

11

2.17 Miscellaneous

unsigned long mpz_poly_max_limbs(mpz_poly_t poly)
unsigned long mpz_poly_max_bits (mpz_poly_t poly)

Return the maximum number of limbs (respectively bits) in the coefficients of poly. Note
that the former is somewhat faster, so it should be used if only a rough upper bound on the
size is required.

unsigned long mpz_poly_product_max_limbs (mpz_poly_t polyl,
mpz_poly_t poly2)

unsigned long mpz_poly_product_max_bits(mpz_poly_t polyl,
mpz_poly_t poly2)

Returns the maximum number of limbs (respectively bits) that the coefficients of the product
of polyl and poly2 could possibly have, based on their lengths and coeflicient sizes.

Note that mpz_poly_product_max_limbs() only examines the limb sizes of each input poly-
nomial, so it’s a fairly coarse estimate; it could overshoot the true bound by several limbs.
It should not be used in situations where a tight bound is required. On the other hand it is
faster than mpz_poly_product_max_bits().

12

