
FLINT: Fast Library for Number Theory

William B. Hart

September 14, 2007

1 Introduction

FLINT is a C library for doing number theory. It is released under the GPL and we encourage interested
people to contribute and/or fork our code.
FLINT will eventually have implementations of algorithms in number theory, specifically algebraic num-
ber theory, including p-adics. We have no plans to implement algebraic geometry, group theory or elliptic
curve algorithms, but this may change if a suitable maintainer is found who would like to oversee such
a project.
FLINT is currently maintained by Bill Hart from Warwick University and David Harvey from Harvard.
Although FLINT is designed as a standalone C library for direct use in C programs by number theorists,
parts of FLINT will be made available for use in SAGE, maintained by William Stein.
FLINT 0.5, which includes fast polynomial multiplication (which has been incorporated into the SAGE
version of Pari) and fast integer factorisation via the MPQS (multiple polynomial quadratic sieve) have
been incorporated into SAGE (the sieve is the qsieve command which appears in SAGE 1.6 and following
and the SAGE version of Pari makes use of FLINT from SAGE 2.5.1 onwards).
The intention is to release a series of improvements to Pari and the standalone quadratic sieve starting
with FLINT 0.5 and onwards. These releases, FLINT 0.5, 0.6, etc., will be prereleases only.
FLINT 1.0 will be the first version of FLINT which will be a standalone C library with a documented
interface which can be used by an end user. Its anticipated release date is July 1st 2007.

1.1 Code Base

FLINT is written entirely in C and all code must conform to the C99 standard. It must compile with the
GCC toolset, available on most unix based systems. FLINT should have as few dependencies as possible,
but any function from GMP may be used.
The code is maintained at a sourceforge SVN repository. The main development code is available at:
https://svn.sourceforge.net/svnroot/fastlibnt/trunk
Released versions of FLINT are forked from the main trunk and stored in separate folders in the reposi-
tory, e.g. FLINT 0.5 is at
https://svn.sourceforge.net/svnroot/fastlibnt/flint-0.5
Various experimental branches are held at:
https://svn.sourceforge.net/svnroot/fastlibnt/branches
Programmers who wish to fiddle with some new ideas can start a branch ad libitum and play with FLINT
files there without affecting the main development code.

1



1.2 Website

The FLINT website is found at:

http://www.flintlib.org/

Information about FLINT (pre)releases, progress updates and future directions can be found there.
Profiles will also be linked to from the website for comparison with other comparable packages and
projects.

In addition, programmers can access the FLINT sourceforge project at:

http://www.sourceforge.org/flintlibnt/

1.3 Development forums

Sourceforge provides us with a development forum. Developers who wish to be added to the FLINT
development list can send an email requesting addition to hart wb@yahoo.com

In addition, on occasion, FLINT developers find it useful to discuss things on IRC. The channel for this
is flint-dev on the irc.freenode.net server. A web based IRC client is available at:

http://www.rlscnetwork.com/sharedresources/chat.html

1.4 Performance

The aim is for all FLINT functions to be at least as fast as the comparable functions available in the
open source projects of a similar nature. The more elaborate functions will be faster in FLINT than in
other open source projects where possible, and sometimes significantly faster.

In particular FLINT will perform as well as or better than NTL, Pari and LiDIA, which seem to be the
most popular open source alternatives. FLINT will be regularly profiled and compared against these
packages on a function by function basis. The more elaborate functions will have more elaborate profiles.

We also aim to beat MAGMA where possible, however it won’t be a condition for a release of FLINT to
be made that all functions in FLINT perform better than their MAGMA counterparts.

Profiles comparing FLINT with MAGMA will also be done regularly. However such a comparison is
not fair to either FLINT or MAGMA, since MAGMA is an interpreted package, not a C library, and
MAGMA is closed source and non-free, whereas FLINT is free and open source.

1.5 Testing

All functions available to an end user in FLINT will have a corresponding test function (to be written
by the person who wrote the function, if no one else volunteers to do it for them). Also, all sufficiently
sophisticated internal FLINT functions must have a corresponding test function. One line functions,
which for example just return the value of some field of a structure, need not have a test function.

The general strategies used for testing FLINT functions are:

1) Send a large amount of random data of varying sizes and parameters to the function where possible.

2) Use the special GMP functions for generating random integers with long strings of 1’s and 0’s where
this is possible.

3) If there is an associated function which should undo the effect of the function being tested (e.g. an
addition function and a corresponding subtraction function), test the functions against one another.

2



4) If possible, get the function to do a standard computation, the result of which can be checked, e.g.
check a factoring function by feeding numbers which are the known product of random integers and
check the result.

5) If no other form of testing is possible, write a very simple version of the function which performs very
poorly perhaps, or which uses a much simpler algorithm but produces the same result and compare the
outputs.

6) Always do sufficient ”eyeball” tests, i.e. get the function to print its output to the screen and look at
the output to see if it looks like it is returning vaguely reasonable looking results to the eye.

7) Check boundary cases and just either side of them.

If it is only possible to test a function in situ (i.e. as part of a larger function which calls it), and a
simpler version cannot be implemented to test against, insert checkpoints within each branch of the
function and run random data through the function until such time as all branches have been worked.
Explicitly check that all branches did what they were supposed to. FLINT ASSERT’s can be used to
check that certain conditions were met after the branch executed.

The functions for testing the functions in ssmul.c should all be in a file called ssmul-test.c, etc.

The final version of a test file should take 1-2 seconds to test each function in the file being test, where
possible (sometimes a much longer time may be necessary). However, much more extensive tests should
be run by the programmer when the function is first written, to ensure that the function works as
expected in every conceivable situation, especially if the function is very involved. Such test code should
be retained, but need not execute when a user executes a make test.

Each final test function should print which function is being tested and then ok or fail. Examples of easy
ways to set up such a test file can be found in the trunk of the development code, e.g. Zpoly mpn-test.c

1.6 Parallel Processing

FLINT will support parallel processing at the thread level using pthreads. All functions that are suffi-
ciently complicated will allow threads to be used. A global #define USE THREADS in flint.h specifies
whether threads should be used, and flint files using threads should contain

#include "flint.h"

#ifdef USE_THREADS
//code that makes use of threads
#else
//code that doesn’t use threads
#endif

The files flint-threads.h and flint-threads.c will contain a flint thread manager. It will have a function
which can be accessed which gives an upper limit on the number of new threads that should be created
by a function which wants to create some new threads. All threaded functions should check how many
threads it is allowed to create before creating any.

It will also have various other helper functions for implementing more complicated threaded scenarios
where threads will be kept hanging around waiting for work and woken up when work is available for
them, or for implementing work stealing etc.

3



1.7 Memory Manager

FLINT has a memory manager. When we were implementing polynomial multiplication, we found that
just allocating memory as needed with malloc, was too slow. It is hopelessly bad if the function is
recursive.

At the very least, functions should allocate as much of the memory as they need up front, then break it
up as needed, rather than allocate lots of small chunks. But even this approach slows some things down.
Thus we introduced a memory manager.

The FLINT memory manager is included in files flint-manager.h and flint-manager.c. It is a stack based
memory manager (or will be).

Since stack based memory management is not ideal for threaded programs, it is implemented in a slightly
strange way. Flint memory allocation functions require a thread number. So if there are numerous threads
running within a FLINT function (or indeed a program running multiple threads, each calling different
FLINT functions), each thread that is started will have a different stack of memory allocated to it.
However the memory manager will be able to transfer blocks of memory from one thread to another if
they become available.

However, the implementation details of the memory manager are irrelevant, since it will just work,
regardless of how it is implemented. The only constraint in actual programming is that since the memory
manager is stack based, any given thread should free memory in the reverse order to what it was allocated
in the first place, e.g.

mp_limb_t * data1 = (mp_limb_t *) flint_malloc(1000);
mp_limb_t * data2 = (mp_limb_t *) flint_malloc(2000);
mp_limb_t * data3 = (mp_limb_t *) flint_malloc(300);

// intervening code

flint_free(data3);
flint_free(data2);
flint_free(data1);

Flint will automatically determine which thread made the call and allocate/deallocate from the correct
stack.

1.8 FLINT modules

FLINT is implemented as a series of modules which perform related functions. Examples of modules are
Z, Zvec, Zpoly, Zpoly mpn, Zmod, Zp, etc.

Each module has associated .c and .h files named after it, and an associated test file. E.g. the module
Zpoly contains functions for doing arithmetic with polynomials over the integers all of which are contained
in Zpoly.c and Zpoly.h. Other files may be associated with Zpoly (e.g. ssmul) and these can be determined
by looking at the #includes at the top of Zpoly.h. The test file for Zpoly will be called Zpoly-test.h.
Running “make test” will compile and run all test files in FLINT. To run a specific test program, one
can just type the name of the module, e.g. ./Zpoly-test, after all the test files have compiled.

Files with names like Zpoly-profile.c are for generating profiles for functions in Zpoly. These must be
edited by hand to select which function(s) to spit out profile times for. But all such profile files are
similar. To make all the profile files, one types “make profile”. To run a specific profile, one types for
example ./Zpoly-profile once they have all compiled.

4



Eventually FLINT will have all of the following modules:

Z - Arithmetic for GMP mpz t integers

Z mpn - Arithmetic for integers at the GMP mpn level, but in sign magnitude format

ZLong - Arithmetic for long/unsigned long integers

ZTwosComp - Arithmetic for multi precision integers in twos complement format

ZFermat - Arithmetic for integers modulo a Fermat number p = 2n + 1 where n = 2l

Zmod - Arithmetic for Z/nZ for a multi precision modulus n

ZmodLong - Arithmetic for Z/nZ for a modulus n which fits into an unsigned long

Zp - padic arithmetic

FF - Arithmetic for finite fields

GF2 - Helper functions for arithmetic over GF2

Zpoly - Polynomials over mpz t integers

Zpoly mpn - Polynomials over integers in mpn sign magnitude format

ZpolyTwosComp - Polynomial functions for polys over the twos complement format

ZpolyFermat - Polynomial functions for polys mod a Fermat number

ZmodPoly - Polynomials over Z/nZ for multiprecision n

ZmodPolyLong - Polynomials over Z/nZ for n an unsigned long

ZpPoly - Polys over padics

GF2Poly - Polys over GF2

ZMat - Linear Algebra over mpz t integers

ZMat mpn - Linear Algebra over integers in mpn sign magnitude format

ZmodMat - Linear Algebra over Z/nZ for multiprecision n

ZmodLongMat - Linear Algebra over Z/nZ for an unsigned long n

ZpMat - Linear Algebra over padics

GF2Poly - Linear Algebra over GF2

Lattice - Functions for lattices, including lattice based reduction (LLL)

QFB - Binary quadratic forms

QNF - Quadratic number fields

QZeta - Cyclotomic number fields

NF - General Number Fields

R - Some basic helper functions for floating point reals

C - Some basic helper functions for multi precision complex numbers

Q - Some basic functions for the rationals

5



1.9 Introduction to the FLINT C files

The file flint.h contains all the univeral #defines for flint, including ones that specify how many bits per
limb the machine has, whether threads should be used and many other useful pieces of information.

2 Zpoly

The Zpoly interface has functions for doing arithmetic with polynomials defined over integers imple-
mented as GMP mpz t’s.

The “alloc” field of the Zpoly t type specifies the number of coefficients which have been allocated and
the “length” field specifies the current length of the polynomial. Alloc must be at least 1 but length can
be 0 for the zero polynomial. Alloc should always be less than or equal to length.

The module is divided into two halves. The first half implements functions beginning Zpoly, which
manage everything for the user. In particular, if the result of a function returns a polynomial which is
too long to fit in the allocated space of the output polynomial the whole output polynomial is reallocated
automatically.

The other half of the module implements functions beginning Zpoly. These functions do not allocate
extra space and require the user to do the allocation in advance.

The Zpoly module will contain the following functions:

mpz t* Zpoly get coeff ptr(Zpoly t poly, unsigned long n)

void Zpoly get coeff(mpz t output, Zpoly t poly, unsigned long n)

unsigned long Zpoly get coeff ui(Zpoly t poly, unsigned long n)

long Zpoly get coeff si(Zpoly t poly, unsigned long n)

void Zpoly set coeff(Zpoly t poly, unsigned long n, mpz t x)

void Zpoly set coeff ui(Zpoly t poly, unsigned long n,

void Zpoly set coeff si(Zpoly t poly, unsigned long n, long x)

void Zpoly normalise(Zpoly t poly);

long Zpoly get degree(Zpoly t poly);

unsigned long Zpoly get length(Zpoly t poly);

void Zpoly set(Zpoly t output, Zpoly t input);

void Zpoly zero(Zpoly t output)

void Zpoly swap(Zpoly t x, Zpoly t y)

int Zpoly equal(Zpoly t input1, Zpoly t input2);

void Zpoly add(Zpoly t output, Zpoly t input1, Zpoly t input2);

void Zpoly sub(Zpoly t output, Zpoly t input1, Zpoly t input2);

void Zpoly negate(Zpoly t output, Zpoly t input);

void Zpoly scalar mul(Zpoly t poly, mpz t x);

void Zpoly scalar mul ui(Zpoly t poly, unsigned long x);

void Zpoly scalar mul si(Zpoly t poly, long x);

void Zpoly scalar div(Zpoly t poly, mpz t x);

void Zpoly scalar div ui(Zpoly t poly, unsigned long x);

6



void Zpoly mul(Zpoly t output, Zpoly t input1, Zpoly t input2);

void Zpoly mul naive(Zpoly t output, Zpoly t input1, Zpoly t input2);

void Zpoly mul karatsuba(Zpoly t output, Zpoly t input1, Zpoly t input2);

void Zpoly sqr(Zpoly t output, Zpoly t input);

void Zpoly sqr naive(Zpoly t output, Zpoly t input);

void Zpoly sqr karatsuba(Zpoly t output, Zpoly t input);

void Zpoly left shift(Zpoly t output, Zpoly t input, unsigned long n);

void Zpoly right shift(Zpoly t output, Zpoly t input, unsigned long n);

void Zpoly div(Zpoly t quotient, Zpoly t input1, Zpoly t input2);

void Zpoly rem(Zpoly t remainder, Zpoly t input1, Zpoly t input2);

void Zpoly div rem(Zpoly t quotient, Zpoly t remainder, Zpoly t input1, Zpoly t input2);

void Zpoly gcd(Zpoly t output, Zpoly t input1, Zpoly t input2);

void Zpoly xgcd(Zpoly t a, Zpoly t b, Zpoly t output, Zpoly t input1, Zpoly t input2);

void Zpoly content(mpz t content, Zpoly t a);

void Zpoly init(Zpoly t poly);

void Zpoly init2(Zpoly t poly, unsigned long alloc);

void Zpoly init3(Zpoly t poly, unsigned long alloc, unsigned long coeff bits);

void Zpoly realloc(Zpoly t poly, unsigned long alloc);

void Zpoly ensure space(Zpoly t poly, unsigned long alloc)

void Zpoly clear(Zpoly t poly);

along with Zpoly versions of all the Zpoly functions.

3 Zpoly mpn

The Zpoly mpn interface has functions for doing arithmetic with polynomials defined over integers im-
plemented as a special flint type which has a sign and magnitude. Each coefficient has a sign limb,
followed by zero or more limbs (the number of which is specified by the absolute value of the sign limb)
which contain a multiprecision coefficient. If the coefficient is zero, the sign limb is zero. If the sign limb
is negative, the coefficient is interpreted to be negative, etc.

However, each coefficient is allocated exactly the same number of limbs (even if not all of them are used
in each coefficient). The number of limbs allocated for each limb (excluding the sign limb) is specified in
the “limbs” field of the Zpoly mpn t type. The length of the polynomial is given by the “length” field
and the “alloc” field specifies the number of currently allocated coefficients (length should always be less
than or equal to alloc). Alloc must be at least 1 but length can be 0 for the zero polynomial.

The Zpoly mpn module is divided into two halves. The first half implements functions beginning
Zpoly mpn, which manage everything for the user. In particular, if the result of a function returns
a polynomial which is too long to fit in the allocated space of the output polynomial the whole output
polynomial is reallocated automatically.

7



The other half of the module implements functions beginning Zpoly mpn. These functions do not
allocate extra space and require the user to do the allocation in advance. This includes increasing the
number of allocated coefficients and increasing the number of limbs allocated for each coefficient, as
necessary.

The useful feature of the Zpoly mpn functions is that one can specify a subset of the coefficients of a
polynomial and operate on just those coefficients without copying them out to another polynomial first.
As such, no such function should modify the “limbs” field of any Zpoly mpn t’s that are passed to it.
These functions should also never even look at the “alloc” field, since it is not even guaranteed to be set.

The Zpoly mpn module will contain the following functions:

void Zpoly mpn convert out(Zpoly t poly mpz, Zpoly mpn t poly mpn);

void Zpoly mpn convert in(Zpoly mpn t poly mpn, Zpoly t poly mpz);

mp limb t Zpoly mpn get coeff ptr(Zpoly mpn t poly, unsigned long n)

long Zpoly mpn get coeff(mp limb t output, Zpoly mpn t poly, unsigned long n)

unsigned long Zpoly mpn get coeff ui(Zpoly mpn t poly, unsigned long n)

long Zpoly mpn get coeff si(Zpoly mpn t poly, unsigned long n)

void Zpoly mpn set coeff(Zpoly mpn t poly, unsigned long n, mp limb t x, long sign, unsigned long
size)

void Zpoly mpn set coeff ui(Zpoly mpn t poly, unsigned long n, unsigned long x);

void Zpoly mpn set coeff si(Zpoly mpn t poly, unsigned long n, long x);

void Zpoly mpn normalise(Zpoly mpn t poly);

long Zpoly mpn degree(Zpoly mpn t poly)

unsigned long Zpoly mpn length(Zpoly mpn t poly)

unsigned long Zpoly mpn limbs(Zpoly mpn t poly)

long Zpoly mpn degree(Zpoly mpn t poly);

unsigned long Zpoly mpn length(Zpoly mpn t poly);

void Zpoly mpn set(Zpoly mpn t output, Zpoly mpn t input);

void Zpoly mpn zero(Zpoly mpn t output)

void Zpoly mpn swap(Zpoly mpn t x, Zpoly mpn t y);

int Zpoly mpn equal(Zpoly mpn p input1, Zpoly mpn p input2);

void Zpoly mpn negate(Zpoly mpn t output, Zpoly mpn t input);

void Zpoly mpn add(Zpoly mpn t output, Zpoly mpn t input1, Zpoly mpn t input2);

void Zpoly mpn sub(Zpoly mpn t output, Zpoly mpn t input1, Zpoly mpn t input2);

void Zpoly mpn scalar mul(Zpoly mpn t output, Zpoly mpn t poly, mp limb t x);

void Zpoly mpn scalar mul ui(Zpoly mpn t output, Zpoly mpn t poly, unsigned long x);

void Zpoly mpn scalar mul si(Zpoly mpn t output, Zpoly mpn t poly, long x);

void Zpoly mpn scalar div(Zpoly mpn t output, Zpoly mpn t poly, mp limb t x);

void Zpoly mpn scalar div ui(Zpoly mpn t output, Zpoly mpn t poly, unsigned long x);

void Zpoly mpn scalar div si(Zpoly mpn t output, Zpoly mpn t poly, long x);

void Zpoly mpn scalar div exact ui(Zpoly mpn t output, Zpoly mpn t poly, unsigned long x);

8



void Zpoly mpn scalar div exact si(Zpoly mpn t output, Zpoly mpn t poly, long x);

void Zpoly mpn mul(Zpoly mpn t output, Zpoly mpn t input1, Zpoly mpn t input2);

void Zpoly mpn mul naive(Zpoly mpn t output, Zpoly mpn t input1, Zpoly mpn t input2);

void Zpoly mpn mul karatsuba(Zpoly mpn t output, Zpoly mpn t input1, Zpoly mpn t input2);

void Zpoly mpn sqr(Zpoly mpn t output, Zpoly mpn t input);

void Zpoly mpn sqr naive(Zpoly mpn t output, Zpoly mpn t input);

void Zpoly mpn sqr karatsuba(Zpoly mpn t output, Zpoly mpn t input);

void Zpoly mpn left shift(Zpoly mpn t output, Zpoly mpn t input, unsigned long n);

void Zpoly mpn right shift(Zpoly mpn t output, Zpoly mpn t input, unsigned long n);

void Zpoly mpn div(Zpoly mpn t quotient, Zpoly mpn t input1, Zpoly mpn t input2);

void Zpoly mpn rem(Zpoly mpn t remainder, Zpoly mpn t input1, Zpoly mpn t input2);

void Zpoly mpn div rem(Zpoly mpn t quotient, Zpoly mpn t remainder, Zpoly mpn t input1, Zpoly mpn t
input2);

void Zpoly mpn gcd(Zpoly mpn t output, Zpoly mpn t input1, Zpoly mpn t input2);

void Zpoly mpn xgcd(Zpoly mpn t a, Zpoly mpn t b, Zpoly mpn t output, Zpoly mpn t input1, Zpoly mpn t
input2);

void Zpoly mpn content(mp limb t content, Zpoly mpn t a);

void Zpoly mpn init(Zpoly mpn t poly, unsigned long alloc, unsigned long limbs);

void Zpoly mpn realloc(Zpoly mpn t poly, unsigned long alloc);

void Zpoly mpn clear(Zpoly mpn t poly);

along with versions of all the Zpoly mpn functions for the Zpoly layer.

9


