
GAPDoc

(Version 1.0)

May 2007

Frank L übeck
Max Neunhöffer

Frank L übeck — Email: Frank.Luebeck@Math.RWTH-Aachen.De
— Homepage:http://www.math.rwth-aachen.de/˜Frank.Luebeck

Max Neunhöffer — Email: Max.Neunhoeffer@Math.RWTH-Aachen.De
— Homepage:http://www.math.rwth-aachen.de/˜Max.Neunhoeffer

mailto://Frank.Luebeck@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Frank.Luebeck
mailto://Max.Neunhoeffer@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Max.Neunhoeffer

GAPDoc 2

Copyright

c© 2000-2007 by Frank L̈ubeck and Max Neunḧoffer
We adopt the copyright regulations ofGAP as detailed in the copyright notice in theGAP manual.

Contents

1 Introduction and Example 8
1.1 XML . 8
1.2 A complete example . 9
1.3 Some questions. 12

2 How To Type a GAPDoc Document 13
2.1 General XML Syntax. 13

2.1.1 Head of XML Document. 13
2.1.2 Comments . 13
2.1.3 Processing Instructions. 14
2.1.4 Names in XML and Whitespace. 14
2.1.5 Elements . 14
2.1.6 Start Tags. 14
2.1.7 End Tags . 14
2.1.8 Combined Tags for Empty Elements. 14
2.1.9 Entities . 15
2.1.10 Special Characters in XML. 15
2.1.11 Rules for Attribute Values . 15
2.1.12 CDATA . 15
2.1.13 Encoding of an XML Document. 15
2.1.14 Well Formed and Valid XML Documents. 16

2.2 EnteringGAPDoc Documents . 16
2.2.1 Other special characters. 16
2.2.2 Mathematical Formulae. 16
2.2.3 More Entities . 17

3 The Document Type Definition 18
3.1 What is a DTD?. 18
3.2 Overall Document Structure. 18

3.2.1 <Book> . 19
3.2.2 <TitlePage> . 19
3.2.3 <Title> . 19
3.2.4 <Subtitle> . 20
3.2.5 <Version> . 20
3.2.6 <TitleComment> . 21
3.2.7 <Author> . 21

3

GAPDoc 4

3.2.8 <Date> . 21
3.2.9 <Address> . 21
3.2.10 <Abstract> . 21
3.2.11 <Copyright> . 21
3.2.12 <Acknowledgements> . 22
3.2.13 <Colophon> . 22
3.2.14 <TableOfContents> . 22
3.2.15 <Bibliography> . 22
3.2.16 <TheIndex> . 23

3.3 Sectioning Elements . 23
3.3.1 <Body> . 23
3.3.2 <Chapter> . 23
3.3.3 <Heading> . 24
3.3.4 <Appendix> . 24
3.3.5 <Section> . 24
3.3.6 <Subsection> . 24

3.4 ManSection–a special kind of subsection. 25
3.4.1 <ManSection> . 25
3.4.2 <Func> . 25
3.4.3 <Oper> . 26
3.4.4 <Meth> . 26
3.4.5 <Filt> . 27
3.4.6 <Prop> . 27
3.4.7 <Attr> . 27
3.4.8 <Var> . 27
3.4.9 <Fam> . 28
3.4.10 <InfoClass> . 28

3.5 Cross Referencing and Citations. 28
3.5.1 <Ref> . 28
3.5.2 <Label> . 29
3.5.3 <Cite> . 29
3.5.4 <Index> . 30
3.5.5 <URL> . 30
3.5.6 <Email> . 30
3.5.7 <Homepage> . 31

3.6 Structural Elements like Lists. 31
3.6.1 <List> . 31
3.6.2 <Mark> . 31
3.6.3 <Item> . 31
3.6.4 <Enum> . 31
3.6.5 <Table> . 32

3.7 Types of Text . 32
3.7.1 <Emph> and<E> . 32
3.7.2 <Quoted> and<Q> . 33
3.7.3 <Keyword> and<K> . 33
3.7.4 <Arg> and<A> . 33
3.7.5 <Code> and<C> . 33

GAPDoc 5

3.7.6 <File> and<F> . 33
3.7.7 <Button> and . 34
3.7.8 <Package> . 34
3.7.9 <Listing> . 34
3.7.10 <Log> and<Example> . 34
3.7.11 <Verb> . 34

3.8 Elements for Mathematical Formulae. 35
3.8.1 <Math> and<Display> . 35
3.8.2 <M> . 35

3.9 Everything else . 36
3.9.1 <Alt> . 36
3.9.2 <Par> and<P> . 37
3.9.3
 . 37
3.9.4 <Ignore> . 37

4 Distributing a Document into Several Files 38
4.1 The Conventions . 38
4.2 A Tool for Collecting a Document. 39

4.2.1 ComposedDocument. 39
4.2.2 OriginalPositionDocument. 40

5 The Converters and an XML Parser 41
5.1 Producing Documentation from Source Files. 41

5.1.1 MakeGAPDocDoc . 43
5.2 Parsing XML Documents. 43

5.2.1 ParseTreeXMLString. 43
5.2.2 StringXMLElement . 44
5.2.3 EntitySubstitution . 45
5.2.4 DisplayXMLStructure . 45
5.2.5 ApplyToNodesParseTree. 45
5.2.6 GetTextXMLTree. 46
5.2.7 XMLElements . 46
5.2.8 CheckAndCleanGapDocTree. 46
5.2.9 AddParagraphNumbersGapDocTree. 46
5.2.10 InfoXMLParser. 46

5.3 The Converters . 47
5.3.1 GAPDoc2LaTeX . 47
5.3.2 GAPDoc2Text . 48
5.3.3 GAPDoc2TextPrintTextFiles. 48
5.3.4 AddPageNumbersToSix. 49
5.3.5 PrintSixFile . 49
5.3.6 SetGAPDocTextTheme. 49
5.3.7 GAPDoc2HTML . 50
5.3.8 GAPDoc2HTMLPrintHTMLFiles . 52
5.3.9 InfoGAPDoc . 52

5.4 Testing Manual Examples. 52
5.4.1 ManualExamples. 52

GAPDoc 6

5.4.2 ReadTestExamplesString. 53

6 String and Text Utilities 54
6.1 Text Utilities . 54

6.1.1 WHITESPACE . 54
6.1.2 TextAttr . 54
6.1.3 FormatParagraph. 55
6.1.4 SubstitutionSublist. 56
6.1.5 StripBeginEnd . 56
6.1.6 StripEscapeSequences. 56
6.1.7 RepeatedString. 56
6.1.8 NumberDigits. 57
6.1.9 PositionMatchingDelimiter. 57
6.1.10 WordsString . 57
6.1.11 Base64String. 57

6.2 Unicode Strings. 58
6.2.1 Unicode Strings and Characters. 58
6.2.2 Encode . 59
6.2.3 Lengths of UTF-8 strings. 60

6.3 Print Utilities . 61
6.3.1 PrintTo1. 61
6.3.2 StringPrint . 61
6.3.3 PrintFormattedString. 61
6.3.4 Page. 61
6.3.5 StringFile . 62

7 Utilities for Bibliographies 63
7.1 Parsing BibTEX Files . 63

7.1.1 ParseBibFiles. 63
7.1.2 NormalizedNameAndKey. 64
7.1.3 WriteBibFile . 64
7.1.4 InfoBibTools . 65

7.2 The BibXMLext Format . 65
7.3 Utilities for BibXMLext data . 67

7.3.1 Translating BibTEX to BibXMLext . 67
7.3.2 StringBibAsXMLext . 67
7.3.3 ParseBibXMLextString. 68
7.3.4 WriteBibXMLextFile . 68
7.3.5 Bibliography Entries as Records. 69
7.3.6 RecBibXMLEntry . 69
7.3.7 AddHandlerBuildRecBibXMLEntry. 70
7.3.8 StringBibXMLEntry . 71
7.3.9 TemplateBibXML . 72

A The File 3k+1.xml 74

B The File gapdoc.dtd 76

GAPDoc 7

C The File bibxmlext.dtd 85

Chapter 1

Introduction and Example

The main purpose of theGAPDoc package is to define a file format for documentation ofGAP-
programs and -packages (see [GAP06]). The problem is that such documentation should be read-
able in several output formats. For example it should be possible to read the documentation inside
the terminal in whichGAP is running (a text mode) and there should be a printable version in high
typesetting quality (produced by some version of TEX). It is also popular to viewGAP’s online help
with a Web-browser via an HTML-version of the documentation. Nowadays one can use LATEX and
standard viewer programs to produce and view on the screendvi- or pdf-files with full support of
internal and external hyperlinks. Certainly there will be other interesting document formats and tools
in this direction in the future.

Our aim is to find aformat for writingthe documentation which allows a relatively easy translation
into the output formats just mentioned and which hopefully makes it easy to translate to future output
formats as well.

To make documentation written in theGAPDoc format directly usable, we also provide a set of
programs, called converters, which produce text-, hyperlinked LATEX- and HTML-output versions of
a GAPDoc document. These programs are developed by the first named author. They run completely
insideGAP, i.e., no external programs are needed. You only needlatex andpdflatex to process the
LATEX output. These programs are described in Chapter5.

1.1 XML

The definition of theGAPDoc format uses XML, the “eXtendible Markup Language”. This is a
standard (defined by the W3C consortium, seehttp://www.w3c.org) which lays down a syntax for
adding markup to a document or to some data. It allows to define document structures via introducing
markupelementsand certain relations between them. This is done in adocument type definition.
The filegapdoc.dtd contains such a document type definition and is the central part of theGAPDoc
package.

The easiest way for getting a good idea about this is probably to look at an example. The Ap-
pendixA contains a short but completeGAPDoc document for a fictitious share package. In the next
section we will go through this document, explain basic facts about XML and theGAPDoc document
type, and give pointers to more details in later parts of this documentation.

In the last Section1.3of this introductory chapter we try to answer some general questions about
the decisions which lead to theGAPDoc package.

8

http://www.w3c.org

GAPDoc 9

1.2 A complete example

In this section we recall the lines from the example document in AppendixA and give some explana-
tions.

from 3k+1.xml
<?xml version="1.0" encoding="UTF-8"?>

This line just tells a human reader and computer programs that the file is a document with XML
markup and that the text is encoded in the UTF-8 character set (other common encodings are ASCII
or ISO-8895-X encodings).

from 3k+1.xml
<!-- A complete "fake package" documentation

$Id: intro.xml,v 1.10 2007/05/18 16:01:31 gap Exp $
-->

Everything in a XML file between “<!--” and “-->” is a comment and not part of the document
content.

from 3k+1.xml
<!DOCTYPE Book SYSTEM "gapdoc.dtd">

This line says that the document contains markup which is defined in the system filegapdoc.dtd
and that the markup obeys certain rules defined in that file (the endingdtd means “document type
definition”). It further says that the actual content of the document consists of an element with name
“Book”. And we can really see that the remaining part of the file is enclosed as follows:

from 3k+1.xml
<Book Name="3k+1">

[...] (content omitted)
</Book>

This demonstrates the basics of the markup in XML. This part of the document is an “element”. It
consists of the “start tag”<Book Name="3k+1">, the “element content” and the “end tag”</Book>
(end tags always start with</). This element also has an “attribute”Name whose “value” is3k+1.

If you know HTML, this will look familiar to you. But there are some important differences: The
element nameBook and attribute nameName arecase sensitive. The value of an attribute mustalways
be enclosed in quotes. In XMLeveryelement has a start and end tag (which can be combined for
elements defined as “empty”, see for example<TableOfContents/> below).

If you know LATEX, you are familiar with quite different types of markup, for example: The equiv-
alent of theBook element in LATEX is \begin{document} ... \end{document}. The sectioning
in LATEX is not done by explicit start and end markup, but implicitly via heading commands like
\section. Other markup is done by using braces{} and putting some commands inside. And for
mathematical formulae one can use the$ for the startand the end of the markup. In XMLall markup
looks similar to that of theBook element.

The content of the book starts with a title page.
from 3k+1.xml

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Authör
<Email>3kplusone@dev.null</Email>

GAPDoc 10

</Author>

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.

</Copyright>
</TitlePage>

The content of theTitlePage element consists again of elements. In Chapter3 we describe which
elements are allowed within aTitlePage and that their ordering is prescribed in this case. In the
(stupid) name of the author you see that a German umlaut is used directly (in ISO-latin1 encoding).

Contrary to LATEX- or HTML-files this markup does not say anything about the actual layout of
the title page in any output version of the document. It just adds information about themeaningof
pieces of text.

Within theCopyright element there are two more things to learn about XML markup. The<P/>
is a complete element. It is a combined start and end tag. This shortcut is allowed for elements which
are defined to be always “empty”, i.e., to have no content. You may have already guessed that<P/>
is used as a paragraph separator. Note that empty lines do not separate paragraphs (as in LATEX).

The other construct we see here is©right;. This is an example of an “entity” in XML and
is a macro for some substitution text. Here we use an entity as a shortcut for a complicated expression
which makes it possible that the termcopyright is printed as some text like(C) in text terminal
output and as a copyright character in other output formats. InGAPDoc we predefine some entities.
Certain “special characters” must be typed via entities, for example “<”, “>” and “&” to avoid a
misinterpretation as XML markup. It is possible to define additional entities for your document inside
the<!DOCTYPE ...> declaration, see2.2.3.

Note that elements in XML must always be properly nested, as in this example. A construct like
<a>... is not allowed.

from 3k+1.xml
<TableOfContents/>

This is another example of an “empty element”. It just means that a table of contents for the whole
document should be included into any output version of the document.

After this the main text of the document follows inside certain sectioning elements:
from 3k+1.xml

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>
<Section Label="sec:theory"> <Heading>Theory</Heading>

[...] (content omitted)
</Section>
<Section> <Heading>Program</Heading>

[...] (content omitted)
</Section>

</Chapter>
</Body>

These elements are used similarly to “\chapter” and “\section” in LATEX. But note that the explicit
end tags are necessary here.

The sectioning commands allow to assign an optional attribute “Label”. This can be used for
referring to a section inside the document.

The text of the first section starts as follows. The whitespace in the text is unimportant and the
indenting is not necessary.

GAPDoc 11

from 3k+1.xml
Let <M>k \in \N</M> be a natural number. We consider the sequence
<M>n(i, k), i \in \N,</M> with <M>n(1, k) = k</M> and else

Here we come to the interesting question how to type mathematical formulae in aGAPDoc document.
We did not find any alternative for writing formulae in TEX syntax. (There is MATHML, but even
simple formulae contain a lot of markup, become quite unreadable and they are cumbersome to type.
Furthermore there seem to be no tools available which translate such formulae in a nice way into TEX
and text.) So, formulae are typed as in LATEX. There are three types of elements containing formulae:
“M”, “Math” and “Display”. The first two are for in-text formulae and the third is for displayed
formulae. Here “M” and “Math” are equivalent, when translating aGAPDoc document into LATEX.
But they are handled differently for terminal text (and HTML) output. For the content of an “M”-
element there are defined rules for a translation into well readable terminal text. More complicated
formulae are in “Math” or “Display” elements and they are just printed as they are typed in text output.
So, to make a section well readable inside a terminal window you should try to put as many formulae
as possible into “M”-elements. In our example text we used the notationn(i, k) instead ofn i(k)
because it is easier to read in text mode. See Sections2.2.2and3.9for more details.

A few lines further on we find two non-internal references.
from 3k+1.xml

problem, see <Cite Key="Wi98"/> or
<URL>http://mathsrv.ku-eichstaett.de/MGF/homes/wirsching/</URL>

The first within the “Cite”-element is the citation of a book. InGAPDoc we use the widely used
BibTEX database format for reference lists. This does not use XML but has a well documented struc-
ture which is easy to parse. And many people have collections of references readily available in this
format. The reference list in an output version of the document is produced with the empty element

from 3k+1.xml
<Bibliography Databases="3k+1" />

close to the end of our example file. The attribute “Databases” give the name(s) of the database (.bib)
files which contain the references.

Putting a Web-address into an “URL”-element allows to create a hyperlink in output formats which
allow this.

The second section of our example contains a special kind of subsection defined inGAPDoc.
from 3k+1.xml

<ManSection>
<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>
<Description>

This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, if <A>max is
given.

<Example>
gap> ThreeKPlusOneSequence(101);
"Sorry, not yet implemented. Wait for Version 84 of the package"
</Example>

</Description>
</ManSection>

GAPDoc 12

A “ManSection” contains the description of some function, operation, method, filter and so on. The
“Func”-element describes the name of afunction (there are also similar elements “Oper”, “Meth”,
“Filt” and so on) and names for its arguments, optional arguments enclosed in square brackets. See
Section3.4for more details.

In the “Description” we write the argument names as “A”-elements. A good description of a
function should usually contain an example of its use. For this there are some verbatim-like elements
in GAPDoc, like “Example” above (here, clearly, whitespace matters which causes a slightly strange
indenting).

The text contains an internal reference to the first section via the explicitly defined label
sec:theory.

The first section also contains a “Ref”-element which refers to the func-
tion described here. Note that there is no explicit label for such a reference.
The pair <Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/> and <Ref
Func="ThreeKPlusOneSequence"/> does the cross referencing (and hyperlinking if possible)
implicitly via the name of the function.

Here is one further element from our example document which we want to explain.
from 3k+1.xml

<TheIndex/>

This is again an empty element which just says that an output version of the document should contain
an index. Many entries for the index are generated automatically because the “Func” and similar
elements implicitly produce such entries. It is also possible to include explicit additional entries in the
index.

1.3 Some questions

Are those XML files too ugly to read and edit? Just have a look and decide yourself. The markup
needs more characters than most TEX or LATEX markup. But the structure of the document is
easier to see. If you configure your favorite editor well, you do not need more key strokes for
typing the markup than in LATEX.

Why do we not use LATEX alone? LATEX is good for writing books. But LATEX files are generally
difficult to parse and to process to other output formats like text for browsing in a terminal
window or HTML (or new formats which may become popular in the future).GAPDoc markup
is one step more abstract than LATEX insofar as it describes meaning instead of appearance of
text. The inner workings of LATEX are too complicated to learn without pain, which makes it
difficult to overcome problems that occur occasionally.

Why XML and not a newly defined markup language? XML is a well defined standard that is
more and more widely used. Lots of people have thought about it. Years of experience with
SGML went into the design. It is easy to explain, easy to parse and lots of tools are available,
there will be more in the future.

Chapter 2

How To Type a GAPDoc Document

In this chapter we give a more formal description of what you need to start to type documentation
in GAPDoc XML format. Many details were already explained by example in Section1.2 of the
introduction.

We donot answer the question “How towrite a GAPDoc document?” in this chapter. You can
(hopefully) find an answer to this question by studying the example in the introduction, see1.2, and
learning about more details in the reference Chapter3.

The definite source for all details of the official XML standard with useful annotations is:
http://www.xml.com/axml/axml.html
Although this document must be quite technical, it is surprisingly well readable.

2.1 General XML Syntax

We will now discuss the pieces of text which can occur in a general XML document. We start with
those pieces which do not contribute to the actual content of the document.

2.1.1 Head of XML Document

Each XML document should have a head which states that it is an XML document in some encoding
and which XML-defined language is used. In case of aGAPDoc document this should always look as
in the following example.

Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Book SYSTEM "gapdoc.dtd">

See2.1.13for a remark on the “encoding” statement.
(There may be local entity definitions inside theDOCTYPE statement, see Subsection2.2.3below.)

2.1.2 Comments

A “comment” in XML starts with the character sequence “<!--” and ends with the sequence “-->”.
Between these sequences there must not be two adjacent dashes “--”.

13

http://www.xml.com/axml/axml.html

GAPDoc 14

2.1.3 Processing Instructions

A “processing instruction” in XML starts with the character sequence “<?” followed by a name
(“xml” is only allowed at the very beginning of the document to declare it being an XML document,
see2.1.1). After that any characters may follow, except that the ending sequence “?>” must not occur
within the processing instruction.

And now we turn to those parts of the document which contribute to its actual content.

2.1.4 Names in XML and Whitespace

A “name” in XML (used for element and attribute identifiers, see below) must start with a letter (in the
encoding of the document) or with a colon “:” or underscore “” character. The following characters
may also be digits, dots “.” or dashes “-”.

This is a simplified description of the rules in the standard, which are concerned with lots of
unicode ranges to specify what a “letter” is.

Sequences only consisting of the following characters are considered aswhitespace: blanks, tabs,
carriage return characters and new line characters.

2.1.5 Elements

The actual content of an XML document consists of “elements”. An element has some “content” with
a leading “start tag” (2.1.6) and a trailing “end tag” (2.1.7). The content can contain further elements
but they must be properly nested. One can define elements whose content is always empty, those
elements can also be entered with a single combined tag (2.1.8).

2.1.6 Start Tags

A “start-tag” consists of a less-than-character “<” directly followed (without whitespace) by an ele-
ment name (see2.1.4), optional attributes, optional whitespace, and a greater-than-character “>”.

An “attribute” consists of some whitespace and then its name followed by an equal sign “=”
which is optionally enclosed by whitespace, and the attribute value, which is enclosed either in single
or double quotes. The attribute value may not contain the type of quote used as a delimiter or the
character “<”, the character “&” may only appear to start an entity, see2.1.9. We describe in2.1.11
how to enter special characters in attribute values.

Note especially that no whitespace is allowed between the starting “<” character and the element
name. The quotes around an attribute value cannot be omitted. The names of elements and attributes
arecase sensitive.

2.1.7 End Tags

An “end tag” consists of the two characters “</” directly followed by the element name, optional
whitespace and a greater-than-character “>”.

2.1.8 Combined Tags for Empty Elements

Elements which always have empty content can be written with a single tag. This looks like a start
tag (see2.1.6) exceptthat the trailing greater-than-character “>” is substituted by the two character
sequence “/>”.

GAPDoc 15

2.1.9 Entities

An “entity” in XML is a macro for some substitution text. There are two types of entities.
A “character entity” can be used to specify characters in the encoding of the document (can be use-

ful for entering non-ASCII characters which you cannot manage to type in directly). They are entered
with a sequence “&#”, directly followed by either some decimal digits or an “x” and some hexadec-
imal digits, directly followed by a semicolon “;”. Using such a character entity is just equivalent to
typing the corresponding character directly.

Then there are references to “named entities”. They are entered with an ampersand character
“&” directly followed by a name which is directly followed by a semicolon “;”. Such entities must
be declared somewhere by giving a substitution text. This text is included in the document and the
document is parsed again afterwards. The exact rules are a bit subtle but you probably want to use
this only in simple cases. Predefined entities forGAPDoc are described in2.1.10and2.2.3.

2.1.10 Special Characters in XML

We have seen that the less-than-character “<” and the ampersand character “&” start a tag or entity
reference in XML. To get these characters into the document text one has to use entity references,
namely “<” to get “<” and “&” to get “&”. Furthermore “>” should sometimes be used to
get “>”.

Another possibility is to use aCDATA statement explained in2.1.12.

2.1.11 Rules for Attribute Values

Attribute values can contain entities which are substituted recursively. But except for the entities <
or a character entity it is not allowed that a< character is introduced by the substitution (there is no
XML parsing for evaluating the attribute value, just entity substitutions).

2.1.12 CDATA

Pieces of text which contain many characters which can be misinterpreted as markup can be enclosed
by the character sequences “<![CDATA[” and “]]>”. Everything between these sequences is consid-
ered as content of the document and is not further interpreted as XML text. All the rules explained
so far in this section donot applyto such a part of the document. The only document content which
cannot be entered directly inside aCDATA statement is the sequence “]]>”. This can be entered as
“]]>” outside theCDATA statement.

Example
A nesting of tags like <a> is not allowed.

2.1.13 Encoding of an XML Document

We suggest to use the UTF-8 encoding for writingGAPDoc XML documents. But the tools described
in Chapter5 also work with ASCII or the various ISO-8859-X encodings (ISO-8859-1 is also called
latin1 and covers most special characters for western European languages).

GAPDoc 16

2.1.14 Well Formed and Valid XML Documents

We want to mention two further important words which are often used in the context of XML docu-
ments. A piece of text becomes a “well formed” XML document if all the formal rules described in
this section are fulfilled.

But this says nothing about the content of the document. To give this content a meaning one needs
a declaration of the element and corresponding attribute names as well as of named entities which are
allowed. Furthermore there may be restrictions how such elements can be nested. Thisdefinition of
an XML based markup languageis done in a “document type definition”. An XML document which
contains only elements and entities declared in such a document type definition and obeys the rules
given there is called “valid (with respect to this document type definition)”.

The main file of theGAPDoc package isgapdoc.dtd. This contains such a definition of a markup
language. We are not going to explain the formal syntax rules for document type definitions in this
section. But in Chapter3 we will explain enough about it to understand the filegapdoc.dtd and so
the markup language defined there.

2.2 Entering GAPDoc Documents

Here are some additional rules for writingGAPDoc XML documents.

2.2.1 Other special characters

As GAPDoc documents are used to produce LATEX and HTML documents, the question arises how to
deal with characters with a special meaning for other applications (for example “&”, “ #”, “ $”, “ %”,
“˜”, “ \”, “ {”, “ }”, “ ”, “ ˆ”, “ ” (this is a non-breakable space, “˜” in LATEX) have a special meaning
for LATEX and “&”, “<”, “>” have a special meaning for HTML (and XML). InGAPDoc you can
usually just type these characters directly, it is the task of the converter programs which translate to
some output format to take care of such special characters. The exceptions to this simple rule are:

• & and< must be entered as& and< as explained in2.1.10.

• The content of theGAPDoc elements<M>,<Math> and<Display> is LATEX code, see3.8.

• The content of an<Alt> element withOnly attribute contains code for the specified output
type, see3.9.1.

Remark: In former versions ofGAPDoc one had to use particular entities for all the special char-
acters mentioned above (&tamp;, &hash;, $, &percent;, ˜, &bslash;, &obrace;,
&cbrace;, &uscore;, &circum;, &tlt;, &tgt;). These are no longer needed, but they are still de-
fined for backwards compatibility with olderGAPDoc documents.

2.2.2 Mathematical Formulae

Mathematical formulae inGAPDoc are typed as in LATEX. They must be the content of one of three
types ofGAPDoc elements concerned with mathematical formulae: “Math”, “ Display”, and “M” (see
Sections3.8.1and3.8.2for more details). The first two correspond to LATEX’s math mode and display
math mode. The last one is a special form of the “Math” element type, that imposes certain restrictions
on the content. On the other hand the content of an “M” element is processed in a well defined way for
text terminal or HTML output.

GAPDoc 17

Note that the content of these element is LATEX code, but the special characters “<” and “&” for
XML must be entered via the entities described in2.1.10or by using aCDATA statement, see2.1.12.

2.2.3 More Entities

In GAPDoc there are some more predefined entities:

&GAP; GAP
&GAPDoc; GAPDoc
&TeX; TEX
&LaTeX; LATEX
&BibTeX; BibTEX
&MeatAxe; MeatAxe
&XGAP; XGAP
©right; c©
 “ ”
– –

Table: Predefined Entities in theGAPDoc system

Here is a non-breakable space character.
One can define further local entities right inside the head (see2.1.1) of aGAPDoc XML document

as in the following example.
Example

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Book SYSTEM "gapdoc.dtd"
[<!ENTITY MyEntity "some longish <E>text</E> possibly with markup">
]>

These additional definitions go into the<!DOCTYPE tag in square brackets. Such new entities are used
like this: &MyEntity;

Chapter 3

The Document Type Definition

In this chapter we first explain what a “document type definition” is and then describegapdoc.dtd in
detail. That file together with the current chapter define how aGAPDoc document has to look like. It
can be found in the main directory of theGAPDoc package and it is reproduced in AppendixB.

We do not give many examples in this chapter which is more intended as a formal reference
for all GAPDoc elements. Instead we provide an extra document with book nameGAPDocExample
(also accessible from theGAP online help). This uses all the constructs introduced in this chapter
and you can easily compare the source code and how it looks like in the different output formats.
Furthermore recall that many basic things about XML markup were already explained by example in
the introductory chapter1.

3.1 What is a DTD?

A document type definition (DTD) is a formal declaration of how an XML document has to be struc-
tured. It is itself structured such that programs that handle documents can read it and treat the docu-
ments accordingly. There are for example parsers and validity checkers that use the DTD to validate
an XML document, see2.1.14.

The main thing a DTD does is to specify which elements may occur in documents of a certain
document type, how they can be nested, and what attributes they can or must have. So, for each
element there is a rule.

Note that a DTD cannotensure that a document which is “valid” also makes sense to the convert-
ers! It only says something about the formal structure of the document.

For the remaining part of this chapter we have divided the elements ofGAPDoc documents into
several subsets, each of which will be discussed in one of the next sections.

See the following three subsections to learn by example, how a DTD works. We do not want to be
too formal here, but just enable the reader to understand the declarations ingapdoc.dtd. For precise
descriptions of the syntax of DTD’s see again the official standard in:

http://www.xml.com/axml/axml.html

3.2 Overall Document Structure

A GAPDoc document contains on its top level exactly one element with nameBook. This element is
declared in the DTD as follows:

18

http://www.xml.com/axml/axml.html

GAPDoc 19

3.2.1 <Book>
From gapdoc.dtd

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,
TheIndex?)>

<!ATTLIST Book Name CDATA #REQUIRED>

After the keywordELEMENT and the nameBook there is a list in parentheses. This is a comma separated
list of names of elements which can occur (in the given order) in the content of aBook element.
Each name in such a list can be followed by one of the characters “?”, “ *” or “ +”, meaning that the
corresponding element can occur zero or one time, an arbitrary number of times, or at least once,
respectively. Without such an extra character the corresponding element must occur exactly once.
Instead of one name in this list there can also be a list of elements names separated by “|” characters,
this denotes any element with one of the names (i.e., “|” means “or”).

So, theBook element must contain first aTitlePage element, then an optionalTableOfContents
element, then aBody element, then zero or more elements of typeAppendix, then an optional
Bibliography element, and finally an optional element of typeTheIndex.

Note thatonly these elements are allowed in the content of theBook element. No other elements
or text is allowed in between. An exception of this is that there may be whitespace between the end tag
of one and the start tag of the next element - this should be ignored when the document is processed
to some output format. An element like this is called an element with “element content”.

The second declaration starts with the keywordATTLIST and the element nameBook. After that
there is a triple of whitespace separated parameters (in general an arbitrary number of such triples,
one for each allowed attribute name). The first (Name) is the name of an attribute for aBook element.
The second (CDATA) is always the same for all of our declarations, it means that the value of the
attribute consists of “character data”. The third parameter#REQUIRED means that this attribute must
be specified with anyBook element. Later we will also see optional attributes which are declared as
#IMPLIED.

3.2.2 <TitlePage >
From gapdoc.dtd

<!ELEMENT TitlePage (Title, Subtitle?, Version?, TitleComment?,
Author+, Date?, Address?, Abstract?, Copyright?,
Acknowledgements? , Colophon?)>

Within this element information for the title page is collected. Note that more than one author can
be specified. The elements must appear in this order because there is no sensible way to specify in a
DTD something like “the following elements may occur in any order but each exactly once”.

Before going on with the other elements inside theBook element we explain the elements for the
title page.

3.2.3 <Title >
From gapdoc.dtd

<!ELEMENT Title (%Text;)*>

GAPDoc 20

Here is the last construct you need to understand for readinggapdoc.dtd. The expression “%Text;”
is a so-called “parameter entity”. It is something like a macro within the DTD. It is defined as follows:

From gapdoc.dtd
<!ENTITY % Text "%InnerText; | List | Enum | Table">

This means, that every occurrence of “%Text;” in the DTD is replaced by the expression
From gapdoc.dtd

%InnerText; | List | Enum | Table

which is then expanded further because of the following definition:
From gapdoc.dtd

<!ENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P | Br |
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Address | Cite | Label |
Ref | Index" >

These are the only two parameter entities we are using. They expand to lists of element names which
are explained in the sequeland the keyword#PCDATA (concatenated with the “or” character “|”).

So, the element (Title) is of so-called “mixed content”: It can containparsed character data
which does not contain further markup (#PCDATA) or any of the other above mentioned elements.
Mixed content must always have the asterisk qualifier (like inTitle) such that any sequence of
elements (of the above list) and character data can be contained in aTitle element.

The %Text; parameter entity is used in all places in the DTD, where “normal text” should be
allowed, including lists, enumerations, and tables, butnosectioning elements.

The%InnerText; parameter entity is used in all places in the DTD, where “inner text” should be
allowed. This means, that no structures like lists, enumerations, and tables are allowed. This is used
for example in headings.

3.2.4 <Subtitle >
From gapdoc.dtd

<!ELEMENT Subtitle (%Text;)*>

Contains the subtitle of the document.

3.2.5 <Version >
From gapdoc.dtd

<!ELEMENT Version (#PCDATA|Alt)*>

Note that the version can only contain character data and no further markup elements (except forAlt,
which is necessary to resolve the entities described in2.2.3). The converters willnot put the word
“Version” in front of the text in this element.

GAPDoc 21

3.2.6 <TitleComment >
From gapdoc.dtd

<!ELEMENT TitleComment (%Text;)*>

Sometimes a title and subtitle are not sufficient to give a rough idea about the content of a package.
In this case use this optional element to specify an additional text for the front page of the book. This
text should be short, use theAbstract element (see3.2.10) for longer explanations.

3.2.7 <Author >
From gapdoc.dtd

<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->

As noted in the comment there may be more than one element of this type. This elements should
contain the name of an author and probably anEmail-address and/or WWW-Homepage element for
this author, see3.5.6and3.5.7. You can also specify an individual postal address here, instead of
using theAddress element described below, see3.2.9.

3.2.8 <Date >
From gapdoc.dtd

<!ELEMENT Date (#PCDATA)>

Only character data is allowed in this element which gives a date for the document. No automatic
formatting is done.

3.2.9 <Address >
From gapdoc.dtd

<!ELEMENT Address (#PCDATA|Alt|Br)*>

This optional element can be used to specify a postal address of the author or the authors. If there are
several authors with different addresses then put theAddress elements inside theAuthor elements.

Use theBr element (see3.9.3) to mark the line breaks in the usual formatting of the address on a
letter.

Note that often it is not necessary to use this element because a postal address is easy to find via a
link to a personal web page.

3.2.10 <Abstract >
From gapdoc.dtd

<!ELEMENT Abstract (%Text;)*>

This element contains an abstract of the whole book.

3.2.11 <Copyright >
From gapdoc.dtd

<!ELEMENT Copyright (%Text;)*>

This element is used for the copyright notice. Note the©right; entity as described in section
2.2.3.

GAPDoc 22

3.2.12 <Acknowledgements >
From gapdoc.dtd

<!ELEMENT Acknowledgements (%Text;)*>

This element contains the acknowledgements.

3.2.13 <Colophon >
From gapdoc.dtd

<!ELEMENT Colophon (%Text;)*>

The “colophon” page is used to say something about the history of a document.

3.2.14 <TableOfContents >
From gapdoc.dtd

<!ELEMENT TableOfContents EMPTY>

This element may occur in theBook element after theTitlePage element. If it is present, a table of
contents is generated and inserted into the document. Note that because this element is declared to be
EMPTY one can use the abbreviation

Example
<TableOfContents/>

to denote this empty element.

3.2.15 <Bibliography >
From gapdoc.dtd

<!ELEMENT Bibliography EMPTY>
<!ATTLIST Bibliography Databases CDATA #REQUIRED

Style CDATA #IMPLIED>

This element may occur in theBook element after the lastAppendix element. If it is present, a
bibliography section is generated and inserted into the document. The attributeDatabases must be
specified, the names of several data files can be specified, separated by commas.

Two kinds of files can be specified inDatabases: The first are BibTEX files as defined in [Lam85,
Appendix B]. Such files must have a name with extension.bib, and inDatabases the name must
be givenwithout this extension. The second are files in BibXMLext format as defined in Section7.2.
These files must have an extension.xml and inDatabases thefull name must be specified.

We suggest to use the BibXMLext format because it allows to produce potentially nicer bibliog-
raphy entries in text and HTML documents.

A bibliography style may be specified with theStyle attribute. The optionalStyle attribute
(for LATEX output of the document) must also be specified without the.bst extension (the default
is alpha). See also section3.5.3 for a description of theCite element which is used to include
bibliography references into the text.

GAPDoc 23

3.2.16 <TheIndex >
From gapdoc.dtd

<!ELEMENT TheIndex EMPTY>

This element may occur in theBook element after theBibliography element. If it is present, an
index is generated and inserted into the document. There are elements inGAPDoc which implicitly
generate index entries (e.g.,Func (3.4.2)) and there is an elementIndex (3.5.4)for explicitly adding
index entries.

3.3 Sectioning Elements

A GAPDoc book is divided intochapters, sections, andsubsections. The idea is of course, that a
chapter consists of sections, which in turn consist of subsections. However for the sake of flexibility,
the rules are not too restrictive. Firstly, text is allowed everywhere in the body of the document (and
not only within sections). Secondly, the chapter level may be omitted. The exact rules are described
below.

Appendicesare a flavor of chapters, occurring after all regular chapters. There is a special type
of subsection called “ManSection”. This is a subsection devoted to the description of a function,
operation or variable. It is analogous to a manpage in the UNIX environment. Usually each function,
operation, method, and so on should have its ownManSection.

Cross referencing is done on the level ofSubsections, respectivelyManSections. The topics in
GAP’s online help are also pointing to subsections. So, they should not be too long.

We start our description of the sectioning elements “top-down”:

3.3.1 <Body>

TheBody element marks the main part of the document. It must occur after theTableOfContents
element. There is a big difference betweeninsideandoutsideof this element: Whereas regular text
is allowed nearly everywhere in theBody element and its subelements, this is not true for theoutside.
This has also implications on the handling of whitespace.Outsidesuperfluous whitespace is usually
ignored when it occurs between elements.Insideof the Body element whitespace matters because
character data is allowed nearly everywhere. Here is the definition in the DTD:

From gapdoc.dtd
<!ELEMENT Body (%Text;| Chapter | Section)*>

The fact thatChapter andSection elements are allowed here leads to the possibility to omit the
chapter level entirely in the document. For a description of%Text; see3.2.3.

(Remark: The purpose of this element is to make sure that avalid GAPDoc document has a correct
overall structure, which is only possible when the top elementBook has element content.)

3.3.2 <Chapter >
From gapdoc.dtd

<!ELEMENT Chapter (%Text;| Heading | Section)*>
<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes -->

A Chapter element can have aLabel attribute, such that this chapter can be referenced later on with
a Ref element (see section3.5.1). Note that you have to specify a label to reference the chapter as
there is no automatic labelling!

GAPDoc 24

Chapter elements can contain text (for a description of%Text; see3.2.3), Section elements,
andHeading elements.

The followingadditionalrule cannot be stated in the DTD because we want aChapter element to
have mixed content. There must beexactly oneHeading element in theChapter element, containing
the heading of the chapter. Here is its definition:

3.3.3 <Heading >
From gapdoc.dtd

<!ELEMENT Heading (%InnerText;)*>

This element is used for headings inChapter, Section, Subsection, andAppendix elements. It
may only contain%InnerText; (for a description see3.2.3).

Each of the mentioned sectioning elements must contain exactly one directHeading element (i.e.,
one which is not contained in another sectioning element).

3.3.4 <Appendix >
From gapdoc.dtd

<!ELEMENT Appendix (%Text;| Heading | Section)*>
<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes -->

The Appendix element behaves exactly like aChapter element (see3.3.2) except for the position
within the document and the numbering. While chapters are counted with numbers (1., 2., 3., ...) the
appendices are counted with capital letters (A., B., ...).

Again there is an optionalLabel attribute used for references.

3.3.5 <Section >
From gapdoc.dtd

<!ELEMENT Section (%Text;| Heading | Subsection | ManSection)*>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes -->

A Section element can have aLabel attribute, such that this section can be referenced later on with a
Ref element (see section3.5.1). Note that you have to specify a label to reference the section as there
is no automatic labelling!

Section elements can contain text (for a description of%Text; see3.2.3), Heading elements,
and subsections.

There must be exactly one directHeading element in aSection element, containing the heading
of the section.

Note that a subsection is either aSubsection element or aManSection element.

3.3.6 <Subsection >
From gapdoc.dtd

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes -->

TheSubsection element can have aLabel attribute, such that this subsection can be referenced later
on with aRef element (see section3.5.1). Note that you have to specify a label to reference the
subsection as there is no automatic labelling!

GAPDoc 25

Subsection elements can contain text (for a description of%Text; see3.2.3), andHeading
elements.

There must be exactly oneHeading element in aSubsection element, containing the heading of
the subsection.

Another type of subsection is aManSection, explained now:

3.4 ManSection–a special kind of subsection

ManSections are intended to describe a function, operation, method, variable, or some other technical
instance. It is analogous to a manpage in the UNIX environment.

3.4.1 <ManSection >
From gapdoc.dtd

<!ELEMENT ManSection (Heading?,
((Func, Returns?) | (Oper, Returns?) |
(Meth, Returns?) | (Filt, Returns?) |
(Prop, Returns?) | (Attr, Returns?) |
Var | Fam | InfoClass)+, Description)>

<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Returns (%Text;)*>
<!ELEMENT Description (%Text;)*>

TheManSection element can have aLabel attribute, such that this subsection can be referenced later
on with aRef element (see section3.5.1). But this is probably rarely necessary because the elements
Func and so on (explained below) generate automatically labels for cross referencing.

The content of aManSection element is one or more elements describing certain items inGAP,
each of them optionally followed by aReturns element, followed by aDescription element, which
contains%Text; (see3.2.3) describing it. (Remember to include examples in the description as often
as possible, see3.7.10). The classes of itemsGAPDoc knows of are: functions (Func), operations
(Oper), methods (Meth), filters (Filt), properties (Prop), attributes (Attr), variables (Var), families
(Fam), and info classes (InfoClass). OneManSection should only describe several of such items
when these are very closely related.

Each element for an item corresponding to aGAP function can be followed by aReturns element.
In output versions of the document the string “Returns: ” will be put in front of the content text. The
text in theReturns element should usually be a short hint about the type of object returned by the
function. This is intended to give a good mnemonic for the use of a function (together with a good
choice of names for the formal arguments).

ManSections are also sectioning elements which count as subsections. Usually there should be
noHeading-element in aManSection, in that case a heading is generated automatically from the first
Func-like element. Sometimes this default behaviour does not look appropriate, for example when
there are severalFunc-like elements. For such cases an optionalHeading is allowed.

3.4.2 <Func>
From gapdoc.dtd

<!ELEMENT Func EMPTY>
<!ATTLIST Func Name CDATA #REQUIRED

Label CDATA #IMPLIED

GAPDoc 26

Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of a function. TheName
attribute is required and its value is the name of the function. The value of theArg attribute (also
required) contains the full list of arguments including optional parts, which are denoted by square
brackets. The argument names can be separated by whitespace, commas or the square brackets for the
optional arguments, like"grp[, elm]" or "xx[y[z]]".

The name of the function is also used as label for cross referencing. When the name of the function
appears in the text of the document it shouldalwaysbe written with theRef element, see3.5.1. This
allows to use a unique typesetting style for function names and automatic cross referencing.

If the optionalLabel attribute is given, it is appended (with a colon: in between) to the name of
the function for cross referencing purposes. The text of the label can also appear in the document text.
So, it should be a kind of short explanation.

Example
<Func Arg="x[, y]" Name="LibFunc" Label="for my objects"/>

The optionalComm attribute should be a short description of the function, usually at most one line
long.

This element automatically produces an index entry with the name of the function and, if present,
the text of theLabel attribute as subentry (see also3.2.16and3.5.4).

3.4.3 <Oper>
From gapdoc.dtd

<!ELEMENT Oper EMPTY>
<!ATTLIST Oper Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of an operation. The attributes
are used exactly in the same way as in theFunc element (see3.4.2).

Note that multiple descriptions of the same operation may occur in a document because there
may be several declarations inGAP. Furthermore there may be severalManSections for methods
of this operation (see3.4.4) which also use the same name. For reference purposes these must be
distinguished by differentLabel attributes.

3.4.4 <Meth>
From gapdoc.dtd

<!ELEMENT Meth EMPTY>
<!ATTLIST Meth Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of a method. The attributes
are used exactly in the same way as in theFunc element (see3.4.2).

GAPDoc 27

Frequently, an operation is implemented by several different methods. Therefore it seems to
be interesting to document them independently. This is possible by using the same method name
in different ManSections. It is however required that these subsections and those describing the
corresponding operation are distinguished by differentLabel attributes.

3.4.5 <Filt >
From gapdoc.dtd

<!ELEMENT Filt EMPTY>
<!ATTLIST Filt Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #IMPLIED
Comm CDATA #IMPLIED
Type CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of a filter. The first four
attributes are used in the same way as in theFunc element (see3.4.2), except that theArg attribute is
optional.

The Type attribute can be any string, but it is thought to be something like “Category” or
“Representation”.

3.4.6 <Prop >
From gapdoc.dtd

<!ELEMENT Prop EMPTY>
<!ATTLIST Prop Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of a property. The attributes
are used exactly in the same way as in theFunc element (see3.4.2).

3.4.7 <Attr >
From gapdoc.dtd

<!ELEMENT Attr EMPTY>
<!ATTLIST Attr Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within aManSection element to specify the usage of an attribute (inGAP). The
attributes are used exactly in the same way as in theFunc element (see3.4.2).

3.4.8 <Var >
From gapdoc.dtd

<!ELEMENT Var EMPTY>
<!ATTLIST Var Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

GAPDoc 28

This element is used within aManSection element to document a global variable. The attributes are
used exactly in the same way as in theFunc element (see3.4.2) except that there is noArg attribute.

3.4.9 <Fam>
From gapdoc.dtd

<!ELEMENT Fam EMPTY>
<!ATTLIST Fam Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

This element is used within aManSection element to document a family. The attributes are used
exactly in the same way as in theFunc element (see3.4.2) except that there is noArg attribute.

3.4.10 <InfoClass >
From gapdoc.dtd

<!ELEMENT InfoClass EMPTY>
<!ATTLIST InfoClass Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

This element is used within aManSection element to document an info class. The attributes are used
exactly in the same way as in theFunc element (see3.4.2) except that there is noArg attribute.

3.5 Cross Referencing and Citations

Cross referencing in theGAPDoc system is somewhat different to the usual LATEX cross referencing
in so far, that a reference knows “which type of object” it is referencing. For example a “reference to
a function” is distinguished from a “reference to a chapter”. The idea of this is, that the markup must
contain this information such that the converters can produce better output. The HTML converter can
for example typeset a function reference just as the name of the function with a link to the description
of the function, or a chapter reference as a number with a link in the other case.

Referencing is done with theRef element:

3.5.1 <Ref >
From gapdoc.dtd

<!ELEMENT Ref EMPTY>
<!ATTLIST Ref Func CDATA #IMPLIED

Oper CDATA #IMPLIED
Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED
Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED
Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED

GAPDoc 29

Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text | Number) #IMPLIED> <!-- normally automatic -->

The Ref element is defined to beEMPTY. If one of the attributesFunc, Oper, Meth, Prop, Attr,
Var, Fam, InfoClass, Chap, Sect, Subsect, Appendix is given then there must be exactly one of
these, making the reference one to the corresponding object. TheLabel attribute can be specified in
addition to make the reference unique, for example if more than one method with a given name is
present. (Note that there is no way to specify in the DTD that exactly one of the first listed attributes
must be given, this is an additional rule.)

A reference to aLabel element defined below (see3.5.2) is done by giving theLabel attribute
and optionally theText attribute. If theText attribute is present its value is typeset in place of the
Ref element, if linking is possible (for example in HTML). If this is not possible, the section number
is typeset. This type of reference is also used for references to tables (see3.6.5).

An external reference into another book can be specified by using theBookName attribute. In this
case theLabel attribute or, if this is not given, the function or section like attribute, is used to resolve
the reference. The generated reference points to the first hit when asking “?book name: label” inside
GAP.

The optional attributeStyle can take only the valuesText andNumber. It can be used with
references to sectioning units and it gives a hint to the converter programs, whether an explicit section
number is generated or text. Normally all references to sections generate numbers and references to
a GAP object generate the name of the corresponding object with some additional link or sectioning
information, which is the behavior ofStyle="Text". In caseStyle="Number" in all cases an explicit
section number is generated. So

Example
<Ref Subsect="Func" Style="Text"/> described in section
<Ref Subsect="Func" Style="Number"/>

produces: ‘<Func>’ described in section3.4.2.

3.5.2 <Label >
From gapdoc.dtd

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

This element is used to define a label for referencing a certain position in the document, if this is
possible. If an exact reference is not possible (like in a printed version of the document) a reference
to the corresponding subsection is generated. The value of theName attribute must be unique under
all Label elements.

3.5.3 <Cite >
From gapdoc.dtd

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED

Where CDATA #IMPLIED>

GAPDoc 30

This element is for bibliography citations. It isEMPTY by definition. The attributeKey is the key for
a lookup in a BibTEX database that has to be specified in theBibliography element (see3.2.15).
The value of theWhere attribute specifies the position in the document as in the corresponding LATEX
syntax\cite[Where value]{Key value}.

3.5.4 <Index >
From gapdoc.dtd

<!ELEMENT Index (%InnerText;|Subkey)*>
<!ATTLIST Index Key CDATA #IMPLIED

Subkey CDATA #IMPLIED>
<!ELEMENT Subkey (%InnerText;)*>

This element generates an index entry. The text within the element is typeset in the index entry, which
is sorted under the value, that is specified in theKey andSubkey attributes. If they are not specified,
the typeset text itself is used as the key.

A subkey can be specified in the simpler version as an attribute, but then no further markup can
be used for the subkey. Optionally, the subkey text can be given in aSubkey element, in this case the
attribute value is used for sorting but the typeset text is taken from the content ofSubkey.

Note that allFunc and similar elements automatically generate index entries. If theTheIndex
element (3.2.16) is not present in the document allIndex elements are ignored.

3.5.5 <URL>
From gapdoc.dtd

<!ELEMENT URL (#PCDATA|Alt|Link|LinkText)*> <!-- Link, LinkText
variant for case where text needs further markup -->

<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats
that have links like HTML -->

<!ELEMENT Link (%InnerText;)*> <!-- the URL -->
<!ELEMENT LinkText (%InnerText;)*> <!-- text for links, can contain markup -->

This element is for references into the internet. It specifies an URL and optionally a text which can
be used for a link (like in HTML or PDF versions of the document). This can be specified in two
ways: Either the URL is given as element content and the text is given in the optionalText attribute
(in this case the text cannot contain further markup), or the element contains the two elementsLink
andLinkText which in turn contain the URL and the text, respectively. The default value for the text
is the URL itself.

3.5.6 <Email >
From gapdoc.dtd

<!ELEMENT Email (#PCDATA|Alt|Link|LinkText)*>

This element type is the special case of an URL specifying an email address. The content of the
element should be the email address without any prefix like “mailto:”. This address is typeset by all
converters, also without any prefix. In the case of an output document format like HTML the converter
can produce a link with a “mailto:” prefix.

GAPDoc 31

3.5.7 <Homepage>
From gapdoc.dtd

<!ELEMENT Homepage (#PCDATA|Alt|Link|LinkText)*>

This element type is the special case of an URL specifying a WWW-homepage.

3.6 Structural Elements like Lists

The GAPDoc system offers some limited access to structural elements like lists, enumerations, and
tables. Although it is possible to use all LATEX constructs one always has to think about other output
formats. The elements in this section are guaranteed to produce something reasonable in all output
formats.

3.6.1 <List >
From gapdoc.dtd

<!ELEMENT List (((Mark,Item)|(BigMark,Item)|Item)+)>
<!ATTLIST List Only CDATA #IMPLIED

Not CDATA #IMPLIED>

This element produces a list. Each item in the list corresponds to anItem element. EveryItem
element is optionally preceded by aMark element. The content of this is used as a marker for the
item. Note that this marker can be a whole word or even a sentence. It will be typeset in some
emphasized fashion and most converters will provide some indentation for the rest of the item.

TheOnly andNot attributes can be used to specify, that the list is included into the output by only
one type of converter (Only) or all but one type of converter (Not). Of course at most one of the two
attributes may occur in one element. The following values are allowed as of now: “LaTeX”, “ HTML”,
and “Text”. See also theAlt element in3.9.1for more about text alternatives for certain converters.

3.6.2 <Mark>
From gapdoc.dtd

<!ELEMENT Mark (%InnerText;)*>

This element is used in theList element to mark items. See3.6.1for an explanation.

3.6.3 <Item >
From gapdoc.dtd

<!ELEMENT Item (%Text;)*>

This element is used in theList, Enum, andTable elements to specify the items. See sections3.6.1,
3.6.4, and3.6.5for further information.

3.6.4 <Enum>
From gapdoc.dtd

<!ELEMENT Enum (Item+)>
<!ATTLIST Enum Only CDATA #IMPLIED

Not CDATA #IMPLIED>

GAPDoc 32

This element is used identically to theList element (see3.6.1) except that the items may not have
marks attached to them. Instead, the items are numbered automatically. The same comments about
theOnly andNot attributes as above apply.

3.6.5 <Table >
From gapdoc.dtd

<!ELEMENT Table (Caption?, (Row | HorLine)+)>
<!ATTLIST Table Label CDATA #IMPLIED

Only CDATA #IMPLIED
Not CDATA #IMPLIED
Align CDATA #REQUIRED>
<!-- We allow | and l,c,r, nothing else -->

<!ELEMENT Row (Item+)>
<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption (%InnerText;)*>

A table in GAPDoc consists of an optionalCaption element followed by a sequence ofRow and
HorLine elements. AHorLine element produces a horizontal line in the table. ARow element consists
of a sequence ofItem elements as they also occur inList andEnum elements. TheOnly andNot
attributes have the same functionality as described in theList element in3.6.1.

TheAlign attribute is written like a LATEX tabular alignment specifier but only the letters “l”, “ r”,
“c”, and “|” are allowed meaning left alignment, right alignment, centered alignment, and a vertical
line as delimiter between columns respectively.

If the Label attribute is there, one can reference the table with theRef element (see3.5.1) using
its Label attribute.

Usually only simple tables should be used. If you want a complicated table in the LATEX output you
should provide alternatives for text and HTML output. Note that in HTML-4.0 there is no possibility
to interpret the “|” column separators andHorLine elements as intended. There are lines between all
columns and rows or no lines at all.

3.7 Types of Text

This section covers the markup of text. Various types of “text” exist. The following elements are used
in theGAPDoc system to mark them. They mostly come in pairs, one long name which is easier to
remember and a shortcut to make the markup “lighter”.

Most of the following elements are thought to contain only character data and no further markup
elements. It is however necessary to allowAlt elements to resolve the entities described in section
2.2.3.

3.7.1 <Emph> and<E>
From gapdoc.dtd

<!ELEMENT Emph (%InnerText;)*> <!-- Emphasize something -->
<!ELEMENT E (%InnerText;)*> <!-- the same as shortcut -->

This element is used to emphasize some piece of text. It may contain%InnerText; (see3.2.3).

GAPDoc 33

3.7.2 <Quoted > and<Q>
From gapdoc.dtd

<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text -->
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->

This element is used to put some piece of text into “ ”-quotes. It may contain%InnerText; (see
3.2.3).

3.7.3 <Keyword > and<K>
From gapdoc.dtd

<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword -->
<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->

This element is used to mark something as akeyword. Usually this will be aGAP keyword such
as “if” or “ for”. No further markup elements are allowed within this element except for theAlt
element, which is necessary.

3.7.4 <Arg > and<A>
From gapdoc.dtd

<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->
<!ELEMENT A (#PCDATA|Alt)*> <!-- Argument (shortcut) -->

This element is used insideDescriptions in ManSections to mark something as anargument(of
a function, operation, or such). It is guaranteed that the converters typeset those exactly as in the
definition of functions. No further markup elements are allowed within this element.

3.7.5 <Code> and<C>
From gapdoc.dtd

<!ELEMENT Code (#PCDATA|Alt)*> <!-- GAP code -->
<!ELEMENT C (#PCDATA|Alt)*> <!-- GAP code (shortcut) -->

This element is used to mark something as a piece ofcodelike for example aGAP expression. It is
guaranteed that the converters typeset this exactly as in theListing element (compare section3.7.9.
No further markup elements are allowed within this element.

3.7.6 <File > and<F>
From gapdoc.dtd

<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->
<!ELEMENT F (#PCDATA|Alt)*> <!-- Filename (shortcut) -->

This element is used to mark something as afilenameor a pathnamein the file system. No further
markup elements are allowed within this element.

GAPDoc 34

3.7.7 <Button > and
From gapdoc.dtd

<!ELEMENT Button (#PCDATA|Alt)*> <!-- "Button" (also Menu, Key, ...) -->
<!ELEMENT B (#PCDATA|Alt)*> <!-- "Button" (shortcut) -->

This element is used to mark something as abutton. It can also be used for other items in a graphical
user interface likemenus, menu entries, or keys. No further markup elements are allowed within this
element.

3.7.8 <Package >
From gapdoc.dtd

<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->

This element is used to mark something as a name of apackage. This is for example used to define the
entitiesGAP, XGAP or GAPDoc (see section2.2.3). No further markup elements are allowed within
this element.

3.7.9 <Listing >
From gapdoc.dtd

<!ELEMENT Listing (#PCDATA)> <!-- This is just for GAP code listings -->
<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of

listed code, may appear in
output -->

This element is used to embed listings of programs into the document. Only character data and no
other elements are allowed in the content. You shouldnot use the character entities described in
section2.2.3but instead type the characters directly. Only the general XML rules from section2.1
apply. Note especially the usage of<![CDATA[sections described there. It is guaranteed that all
converters use a fixed width font for typesettingListing elements. Compare also the usage of the
Code andC elements in3.7.5.

TheType attribute contains a comment about the type of listed code. It may appear in the output.

3.7.10 <Log> and<Example >
From gapdoc.dtd

<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic
example checking mechanism -->

<!ELEMENT Log (#PCDATA)> <!-- This not -->

These two elements behave exactly like theListing element (see3.7.9). They are thought for pro-
tocols ofGAP sessions. The only difference between the two is thatExample sections are intended
to be subject to an automatic manual checking mechanism used to ensure the correctness of theGAP
manual whereasLog is not touched by this.

3.7.11 <Verb>

There is one further type of verbatim-like element.
From gapdoc.dtd

<!ELEMENT Verb (#PCDATA)>

GAPDoc 35

The content of such an element is guaranteed to be put into an output version exactly as it is using
some fixed width font. Before the content a new line is started. If the line after the end of the start tag
consists of whitespace only then this part of the content is skipped.

This element is intended to be used together with theAlt element to specify pre-formatted ASCII
alternatives for complicatedDisplay formulae orTables.

3.8 Elements for Mathematical Formulae

3.8.1 <Math> and<Display >
From gapdoc.dtd

<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>
<!-- TeX displayed math mode formula -->
<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>

These elements are used for mathematical formulae. As described in section2.2.2they correspond to
LATEX’s math and display math mode respectively.

The formulae are typed in as in LATEX, exceptthat the standard XML entities, see2.1.9(in par-
ticular the characters< and&), must be escaped - either by using the corresponding entities or by
enclosing the formula between “<![CDATA[” and “]]>”. (The main reference for LATEX is [Lam85].)

The only element type that is allowed within the formula elements is theArg or A element (see
3.7.4), which is used to typeset identifiers that are arguments toGAP functions or operations.

In text and HTML output these formulae are shown as LATEX source code. For simple formulae
(and you should try to make all your formulae simple!) there is the elementM (see3.8.2) for which
there is a well defined translation into text, which can be used for text and HTML output versions
of the document. So, if possible try to avoid theMath andDisplay elements or provide useful text
substitutes for complicated formulae viaAlt elements (see3.9.1and3.7.11).

3.8.2 <M>
From gapdoc.dtd

<!-- Math with well defined translation to text output -->
<!ELEMENT M (#PCDATA|A|Arg|Alt)*>

The “M” element type is intended for formulae in the running text for which there is a sensible ASCII
version. For the LATEX version of aGAPDoc document theM andMath elements are equivalent. The
remarks in3.8.1about special characters and theArg element apply here as well. A document which
has all formulae enclosed inM elements can be well readable in text terminal output and printed output
versions.

The following LATEX macros have a sensible ASCII translation and are guaranteed to be translated
accordingly by text (and HTML) converters:

GAPDoc 36

\ast *
\cdot *
\colon :
\equiv =
\geq >=
\hookrightarrow ->
\iff <=>
\langle <

\ldots ...
\left
\leq <=
\leftarrow <-
\Leftarrow <=
\limits
\longrightarrow -->
\Longrightarrow ==>
\mapsto ->
\mathbb
\mathop
\mid |
\pmod mod
\rangle >

\right
\rightarrow ->
\Rightarrow =>
\setminus \
\times x
\to ->

Table: LATEX macros with special text translation

In all other macros only the backslash is removed. Whitespace is normalized (to one blank) but
not removed. Note that whitespace is not added, so you may want to add a few more spaces than you
usually do in your LATEX documents.

Braces{} are removed in general, however pairs of double braces are converted to one pair of
braces. This can be used to write<M>xˆ{12}</M> for xˆ12 and<M>x {{i+1}}</M> for x {i+1}.

3.9 Everything else

3.9.1 <Alt >

This element is used to specify alternatives for different output formats within normal text. See also
sections3.6.1, 3.6.4, and3.6.5for alternatives in lists and tables.

From gapdoc.dtd
<!ELEMENT Alt (%InnerText;)*> <!-- This is only to allow "Only" and

"Not" attributes for normal text -->
<!ATTLIST Alt Only CDATA #IMPLIED

Not CDATA #IMPLIED>

GAPDoc 37

Of course exactly one of the two attributes must occur in one element. The attribute values must be one
word or a list of words, separated by spaces or commas. The words which are currently recognized by
the converter programs contained inGAPDoc are: “LaTeX”, “ HTML”, and “Text”. If the Only attribute
is specified then only the corresponding converter will include the content of the element into the
output document. If theNot attribute is specified the corresponding converter will ignore the content
of the element. You can use other words to specify special alternatives for other converters ofGAPDoc
documents.

We fix a rule for handling the content of anAlt element withOnly attribute. In their content code
for the corresponding output format is included directly. So, in case of HTML the content is HTML
code, in case of LATEX the content is LATEX code. The converters don’t apply any handling of special
characters to this content.

Within the element only%InnerText; (see3.2.3) is allowed. This is to ensure that the same set
of chapters, sections, and subsections show up in all output formats.

3.9.2 <Par > and<P>
From gapdoc.dtd

<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -->
<!ELEMENT P EMPTY> <!-- the same as shortcut -->

ThisEMPTY element marks the boundary of paragraphs. Note that an empty line in the input does not
mark a new paragraph as opposed to the LATEX convention.

(Remark: it would be much easier to parse a document and to understand its sectioning and
paragraph structure when there was an element whosecontentis the text of a paragraph. But in
practice many paragraph boundaries are implicitly clear which would make it somewhat painful to
enclose each paragraph in extra tags. The introduction of theP or Par elements as above delegates
this pain to the writer of a conversion program forGAPDoc documents.)

3.9.3

From gapdoc.dtd

<!ELEMENT Br EMPTY> <!-- a forced line break -->

This element can be used to force a line break in the output versions of aGAPDoc element, it does not
start a new paragraph. Please, do not use this instead of aPar element, this would often lead to ugly
output versions of your document.

3.9.4 <Ignore >
From gapdoc.dtd

<!ELEMENT Ignore (%Text;| Chapter | Section | Subsection | ManSection |
Heading)*>

<!ATTLIST Ignore Remark CDATA #IMPLIED>

This element can appear anywhere. Its content is ignored by the standard converters. It can be used,
for example, to include data which are not part of the actualGAPDoc document, like source code, or
to make not finished parts of the document invisible.

Of course, one can use special converter programs which extract the contents ofIgnore elements.
Information on the type of the content can be stored in the optional attributeRemark.

Chapter 4

Distributing a Document into Several
Files

In GAPDoc there are facilities to distribute a single document over several files. This is for example
interesting, if one wants to store the documentation of some code in the same file as the code itself.
Or, if one just wants to store chapters of a document in separate files. There is a set of conventions
how this is done and some tools to collect the text for further processing.

The technique can also be used to distribute and collect other types of documents into respectively
from several files (e.g., source code, examples).

4.1 The Conventions

In this description we use the stringGAPDoc for marking pieces of a document to collect.
Pieces of documentation that shall be incorporated into another document are marked as follows:

Example
<#GAPDoc Label="MyPiece">
<E>This</E> is the piece.
The hash characters are removed.
<#/GAPDoc>

This piece is then included into another file by a statement like:<#Include Label="MyPiece">
Here are the exact rules, how pieces are gathered:

• All lines up to a line containing the character sequence “<#GAPDoc Label="” (exactly one
space character) are ignored. The characters on the same line before this sequence are stored as
“prefix”. The characters after the sequence up to the next double quotes character are stored as
“label”. All other characters in the line are ignored.

• The following lines up to a line containing the character sequence “<#/GAPDoc>” are stored
under the label. These lines are processed as follows: The longest possible substring from the
beginning of the line that equals the corresponding substring of the prefix is removed.

Having stored a list of labels and pieces of text gathered as above this can be used as follows.

• In GAPDoc documentation files all statements of the form “<#Include Label="Key">” are
replaced by the sequence of lines stored under the labelKey.

38

GAPDoc 39

• Additionally, every occurrence of a statement of the form “<#Include SYSTEM
"Filename">” is replaced by the whole file stored under the nameFilename in the file system.

• These substitutions are done recursively (although one should probably avoid to use this exten-
sively).

Here is another example:
Example

<#GAPDoc Label="AnotherPiece"> some characters
This text is not indented.
This text is indented by one blank.
#Not indented.
#<#/GAPDoc>

replaces<#Include Label="AnotherPiece"> by
Example

This text is not indented.
This text is indented by one blank.
Not indented.

Since these rules are very simple it is quite easy to write a program in almost any programming
language which does this gathering of text pieces and the substitutions. InGAPDoc there is theGAP
functionComposedDocument (4.2.1) which does this.

Note that the XML-tag-like markup we have used here is not a legal XML markup, since the hash
character is not allowed in element names. The mechanism described here is a preprocessing step
which composes a document.

4.2 A Tool for Collecting a Document

4.2.1 ComposedDocument

♦ ComposedDocument(tagname, path, main, source[, info]) (function)

♦ ComposedXMLString(path, main, source[, info]) (function)

Returns: a document as string, or a list with this string and information about the source positions
The argumenttagname is the string used for the pseudo elements which mark the pieces of a doc-

ument to collect. (In4.1we usedGAPDoc astagname . The second functionComposedXMLString(
...) is an abbreviation forComposedDocument("GAPDoc", ...).

The argumentpath must be a path to some directory (as string or directory object),main the
name of a file in this directory andsource a list of file names, all of these relative topath . The
document is constructed via the mechanism described in Section4.1.

First the files given insource are scanned for chunks of the document marked by<#tagname
Label="..."> and</#tagname > pairs. Then the filemain is read and all<#Include ...
>-tags are substituted recursively by other files or chunks of documentation found in the first step,
respectively. If the optional argumentinfo is given and set totrue this function returns a list
[str, origin], wherestr is a string containing the composed document andorigin is a sorted
list of entries of the form[pos, filename, line]. Herepos runs through all character positions of
starting lines or text pieces from different files instr. Thefilename andline describe the origin of
this part of the collected document. Without the fourth argument only the stringstr is returned.

GAPDoc 40

Example
gap> doc := ComposedDocument("GAPDoc", "/my/dir", "manual.xml",
> ["../lib/func.gd", "../lib/func.gi"], true);;

4.2.2 OriginalPositionDocument

♦ OriginalPositionDocument(srcinfo, pos) (function)

Returns: A pair [filename, linenumber].
Here srcinfo must be a data structure as returned as second entry byComposedDocument

(4.2.1) called with info =true. It returns for a given positionpos in the composed document the
file name and line number from which that text was collected.

Chapter 5

The Converters and an XML Parser

The GAPDoc package contains a set of programs which allow us to convert aGAPDoc book into
several output versions and to make them available toGAP’s online help.

Currently the following output formats are provided: text for browsing inside a terminal running
GAP, LATEX with hyperref-package for cross references via hyperlinks and HTML for reading with
a Web-browser.

5.1 Producing Documentation from Source Files

Here we explain how to use the functions which are described in more detail in the following sec-
tions. We assume that we have the main fileMyBook.xml of a book"MyBook" in the directory
/my/book/path. This contains<#Include ...>-statements as explained in Chapter4. These refer
to some other files as well as pieces of text which are found in the comments of someGAP source files
../lib/a.gd and../lib/b.gi (relative to the path above). A BibTEX databaseMyBook.bib for the
citations is also in the directory given above. We want to produce a text-,pdf- and HTML-version
of the document. (A LATEX version of the manual is produced, so it is also easy to compiledvi-, and
postscript-versions.)

All the commands shown in this Section are collected in the single functionMakeGAPDocDoc
(5.1.1).

First we construct the complete XML-document as a string withComposedDocument (4.2.1). This
interprets recursively the<#Include ...>-statements.

Example
gap> path := Directory("/my/book/path");;
gap> main := "MyBook.xml";;
gap> files := ["../lib/a.gd", "../lib/b.gi"];;
gap> bookname := "MyBook";;
gap> doc := ComposedDocument("GAPDoc", path, main, files, true);;

Now doc is a list with two entries, the first is a string containing the XML-document, the second gives
information from which files and locations which part of the document was collected. This is useful
in the next step, if there are any errors in the document.

Next we parse the document and store its structure in a tree-like data structure. The commands
for this areParseTreeXMLString (5.2.1) andCheckAndCleanGapDocTree (5.2.8).

41

GAPDoc 42

Example
gap> r := ParseTreeXMLString(doc[1], doc[2]);;
gap> CheckAndCleanGapDocTree(r);
true

We start to produce a text version of the manual, which can be read in a terminal (window). The com-
mand isGAPDoc2Text (5.3.2). This produces a record with the actual text and some additional infor-
mation. The text can be written chapter-wise into files withGAPDoc2TextPrintTextFiles (5.3.3).
The names of these files arechap0.txt, chap1.txt and so on. The text contains some markup using
ANSI escape sequences. This markup is substituted by theGAP help system (user configurable) to
show the text with colors and other attributes. For the bibliography we have to tellGAPDoc2Text
(5.3.2) the location of the BibTEX database by specifying apath as second argument.

Example
gap> t := GAPDoc2Text(r, path);;
gap> GAPDoc2TextPrintTextFiles(t, path);

This command constructs all parts of the document including table of contents, bibliography and
index. The functionsFormatParagraph (6.1.3) for formatting text paragraphs andParseBibFiles
(7.1.1) for reading BibTEX files with GAP may be of independent interest.

With the text version we have also produced the information which is used for searching with
GAP’s online help. Also, labels are produced which can be used by links in the HTML- andpdf-
versions of the manual.

Next we produce a LATEX version of the document.GAPDoc2LaTeX (5.3.1) returns a string con-
taining the LATEX source. The utility functionFileString (6.3.5) writes the content of a string to a
file, we chooseMyBook.tex.

Example
gap> l := GAPDoc2LaTeX(r);;
gap> FileString(Filename(path, Concatenation(bookname, ".tex")), l);

Assuming that you have a sufficiently good installation of TEX available (seeGAPDoc2LaTeX (5.3.1)
for details) this can be processed with a series of commands like in the following example.

Example
cd /my/book/path
pdflatex MyBook
bibtex MyBook
pdflatex MyBook
makeindex MyBook
pdflatex MyBook
mv MyBook.pdf manual.pdf

After this we have apdf-version of the document in the filemanual.pdf. It contains hyperlink in-
formation which can be used with appropriate browsers for convenient reading of the document on
screen (e.g.,xpdf is nice because it allows remote calls to display named locations of the document).
Of course, we could also use other commands likelatex or dvips to process the LATEX source file.
Furthermore we have produced a fileMyBook.pnr which isGAP-readable and contains the page num-
ber information for each (sub-)section of the document.

We can add this page number information to the indexing information collected by the text con-
verter and then print amanual.six file which is read byGAP when the manual is loaded. This is
done withAddPageNumbersToSix (5.3.4) andPrintSixFile (5.3.5).

GAPDoc 43

Example
gap> AddPageNumbersToSix(r, Filename(path, "MyBook.pnr"));
gap> PrintSixFile(Filename(path, "manual.six"), r, bookname);

Finally we produce an HTML-version of the document and write it (chapter-wise) into files
chap0.html, chap1.html and so on. They can be read with any Web-browser. The com-
mands areGAPDoc2HTML (5.3.7) and GAPDoc2HTMLPrintHTMLFiles (5.3.8). We also add a
link from manual.html to chap0.html. You probably want to add a filemanual.css, see
GAPDoc2HTMLPrintHTMLFiles (5.3.8) for more details. The argumentpath of GAPDoc2HTML (5.3.7)
specifies the directory containing the BibTEX database files.

Example
gap> h := GAPDoc2HTML(r, path);;
gap> GAPDoc2HTMLPrintHTMLFiles(h, path);

5.1.1 MakeGAPDocDoc

♦ MakeGAPDocDoc(path, main, files, bookname[, gaproot]) (function)

This function collects all the commands for producing a text-,pdf- and HTML-version of aGAP-
Doc document as described in Section5.1. It checks the.log file from the call ofpdflatex and
reports if there are errors, warnings or overfull boxes.

Note: If this function works for you depends on your operating system and installed software. It
will probably work on mostUNIX systems with a standard LATEX installation. If the function doesn’t
work for you look at the source code and adjust it to your system.

Herepath must be the directory (as string or directory object) containing the main filemain of
the document (given with or without the.xml extension. The argumentfiles is a list of (probably
source code) files relative topath which contain pieces of documentation which must be included in
the document, see Chapter4. And bookname is the name of the book used byGAP’s online help.
The optional argumentgaproot must be a string which gives the relative path frompath to the
mainGAP root directory. If this is given, the HTML files are produced with relative paths to external
books.

Experimental:MakeGAPDocDoc can be called with additional arguments"Tth" and/or"MathML".
If these are given additional variants of the HTML conversion are called, seeGAPDoc2HTML (5.3.7) for
details.

5.2 Parsing XML Documents

Arbitrary well-formed XML documents can be parsed and browsed by the following functions.

5.2.1 ParseTreeXMLString

♦ ParseTreeXMLString(str[, srcinfo][, entitydict]) (function)

♦ ParseTreeXMLFile(fname[, entitydict]) (function)

Returns: a record which is root of a tree structure
The first function parses an XML-document stored in stringstr and returns the document in

form of a tree.

GAPDoc 44

The optional argumentsrcinfo must have the same format as inOriginalPositionDocument
(4.2.2). If it is given then error messages refer to the original source of the text with the problem.

With the optional argumententitydict named entities can be given to the parser, for ex-
ample entities which are defined in the.dtd-file (which is not read by this parser). The standard
XML-entities do not need to be provided, and forGAPDoc documents the entity definitions from
gapdoc.dtd are automatically provided. Entities in the documents<!DOCTYPE declaration are parsed
and also need not to be provided here. The argumententitydict must be a record where each com-
ponent name is an entity name (without the surrounding & and ;) to which is assigned its substitution
string.

The second function is just a shortcut forParseTreeXMLString(StringFile(fname), ...
), seeStringFile (6.3.5).

After these functions return the list of named entities which were known during the parsing can
be found in the recordENTITYDICT.

A node in the result tree corresponds to an XML element, or to some parsed character data. In the
first case it looks as follows:

Example Node
rec(name := "Book",

attributes := rec(Name := "EDIM"),
content := [... list of nodes for content ...],
start := 312,
stop := 15610,
next := 15611)

This means thatstr {[312..15610]} looks like <Book Name="EDIM"> ... content ...
</Book>.

The leaves of the tree encode parsed character data as in the following example:
Example Node

rec(name := "PCDATA",
content := "text without markup ")

This function checks whether the XML document iswell formed, see2.1.14for an explanation. If an
error in the XML structure is found, a break loop is entered and the text around the position where the
problem starts is shown. WithShow(); one can browse the original input in thePager (Reference:
Pager), starting with the line where the error occurred. All entities are resolved when they are either
entities defined in theGAPDoc package (in particular the standard XML entities) or if their definition
is included in the<!DOCTYPE ..> tag of the document.

Note thatParseTreeXMLString does not parse and interpret the corresponding document type
definition (the.dtd-file given in the<!DOCTYPE ..> tag). Hence it also does not check thevalidity
of the document (i.e., it is novalidating XML parser).

If you are using this function to parse aGAPDoc document you can use
CheckAndCleanGapDocTree (5.2.8) for some validation and additional checking of the docu-
ment structure.

5.2.2 StringXMLElement

♦ StringXMLElement(tree) (function)

Returns: a list[string, positions]
The argumenttree must have a format of a node in the parse tree of an XML document as

returned byParseTreeXMLString (5.2.1) (including the root node representing the full document).

GAPDoc 45

This function computes a pair[string, positions] wherestring contains XML code which is
equivalent to the code which was parsed to gettree . Andpositions is a list of lists of four numbers
[eltb, elte, contb, conte]. There is one such list for each XML element occuring instring,
whereeltb andelte are the begin and end position of this element instring and wherecontb and
conte are begin and end position of the content of this element, or both are0 if there is no content.

Note that parsing XML code is an irreversible task, we can only expect to get equivalent XML
code from this function. But parsing the resultingstring again and applyingStringXMLElement
again gives the same result. See the functionEntitySubstitution (5.2.3) for back-substitutions of
entities in the result.

5.2.3 EntitySubstitution

♦ EntitySubstitution(xmlstring, entities) (function)

Returns: a string
The argumentxmlstring must be a string containing XML code or a pair[string,

positions] as returned byStringXMLElement (5.2.2). The argumententities specifies entity
names (without the surrounding& and;) and their substitution strings, either a list of pairs of strings
or as a record with the names as components and the substitutions as values.

This function tries to substitute non-intersecting parts ofstring by the given entities. If the
positions information is given then only parts of the document which allow a valid substitution by
an entity are considered. Otherwise a simple text substitution without further check is done.

Note that in general the entity resolution in XML documents is a complicated and non-reversible
task. But nevertheless this utility may be useful in not too complicated situations.

5.2.4 DisplayXMLStructure

♦ DisplayXMLStructure(tree) (function)

This utility displays the tree structure of an XML document as it is returned by
ParseTreeXMLString (5.2.1) (without thePCDATA leaves).

Since this is usually quite long the result is shown using thePager (Reference: Pager).

5.2.5 ApplyToNodesParseTree

♦ ApplyToNodesParseTree(tree, fun) (function)

♦ AddRootParseTree(tree) (function)

♦ RemoveRootParseTree(tree) (function)

The functionApplyToNodesParseTree applies a functionfun to all nodes of the parse tree
tree of an XML document returned byParseTreeXMLString (5.2.1).

The functionAddRootParseTree is an application of this. It adds to all nodes a component
.root to which the top node treetree is assigned. These components can be removed afterwards
with RemoveRootParseTree.

Here are two more utilities which useApplyToNodesParseTree (5.2.5).

GAPDoc 46

5.2.6 GetTextXMLTree

♦ GetTextXMLTree(tree) (function)

Returns: a string
The argumenttree must be a node of a parse tree of some XML document, see

ParseTreeXMLFile (5.2.1). This function collects the content of this and all included elements re-
cursively into a string.

5.2.7 XMLElements

♦ XMLElements(tree, eltnames) (function)

Returns: a list of nodes
The argumenttree must be a node of a parse tree of some XML document, see

ParseTreeXMLFile (5.2.1). This function returns a list of all subnodes oftree (possibly includ-
ing tree) of elements with name given in the list of stringseltnames . Use"PCDATA" as name for
leave nodes which contain the actual text of the document. As an abbreviationeltnames can also
be a string which is then put in a one element list.

And here are utilities for processingGAPDoc XML documents.

5.2.8 CheckAndCleanGapDocTree

♦ CheckAndCleanGapDocTree(tree) (function)

Returns: nothing
The argumenttree of this function is a parse tree fromParseTreeXMLString (5.2.1) of some

GAPDoc document. This function does an (incomplete) validity check of the document according to
the document type declaration ingapdoc.dtd. It also does some additional checks which cannot be
described in the DTD (like checking whether chapters and sections have a heading). For elements
with element content the whitespace between these elements is removed.

In case of an error the break loop is entered and the position of the error in the original XML
document is printed. WithShow(); one can browse the original input in thePager (Reference:
Pager).

5.2.9 AddParagraphNumbersGapDocTree

♦ AddParagraphNumbersGapDocTree(tree) (function)

Returns: nothing
The argumenttree must be an XML tree returned byParseTreeXMLString (5.2.1) applied to a

GAPDoc document. This function adds to each node of the tree a component.count which is of form
[Chapter[, Section[, Subsection, Paragraph]]]. Here the first three numbers should be
the same as produced by the LATEX version of the document. Text before the first chapter is counted
as chapter0 and similarly for sections and subsections. Some elements are always considered to start
a new paragraph.

5.2.10 InfoXMLParser

♦ InfoXMLParser (info class)

GAPDoc 47

The default level of this info class is 1. Functions likeParseTreeXMLString (5.2.1) are then
printing some information, in particular in case of errors. You can suppress it by setting the level of
InfoXMLParser to 0. With level 2 there may be some more information for debugging purposes.

5.3 The Converters

Here are more details about the conversion programs forGAPDoc XML documents.

5.3.1 GAPDoc2LaTeX

♦ GAPDoc2LaTeX(tree) (function)

Returns: LATEX document as string
The argumenttree for this function is a tree describing aGAPDoc XML document as returned

by ParseTreeXMLString (5.2.1) (probably also checked withCheckAndCleanGapDocTree (5.2.8)).
The output is a string containing a version of the document which can be written to a file and processed
with LATEX or pdfLATEX (and probably BibTEX andmakeindex).

The output uses thereport document class and needs the following LATEX packages:a4wide,
amssymb, isolatin1, makeidx, color, fancyvrb, pslatex andhyperref. These are for example
provided by theteTeX-1.0 distribution of TEX (which in turn is used for most TEX packages of current
Linux distributions); seehttp://www.tug.org/tetex/.

In particular, the resultingpdf-output (anddvi-output) contains (internal and external) hyperlinks
which can be very useful for online browsing of the document.

The LATEX processing also produces a file with extension.pnr which isGAP readable and contains
the page numbers for all (sub)sections of the document. This can be used byGAP’s online help; see
AddPageNumbersToSix (5.3.4). There is support for two types or XML processing instructions which
allow to change the options used for the document class or to add some extra lines to the preamble of
the LATEX document. They can be specified as in the following examples:

in top level of XML document
<?LaTeX Options="12pt"?>
<?LaTeX ExtraPreamble="\usepackage{blabla}
\newcommand{\bla}{blabla}
"?>

Non-ASCII characters in theGAPDoc document are translated to LATEX input in ASCII-encoding with
the help ofEncode (6.2.2) and the option"LaTeX". See the documentation ofEncode (6.2.2) for how
to proceed if you have a character which is not handled (yet).

A hint for large documents: In many TEX installations one can easily reach some memory lim-
itations with documents which contain many (cross-)references. InteTeX you can look for a file
texmf.cnf which allows to enlarge certain memory sizes.

This function works by running recursively through the document tree and calling a han-
dler function for eachGAPDoc XML element. Many of these handler functions (usually in
GAPDoc2LaTeXProcs.<ElementName>) are not difficult to understand (the greatest complications
are some commands for index entries, labels or the output of page number information). So it should
be easy to adjust layout details to your own taste by slight modifications of the program.

A few settings can be adjusted by a functionSetGapDocLaTeXOptions. It takes one or several
strings as arguments. If the arguments contain one of the strings"pdf", "dvi" or "ps" then LATEXs
hyperref package is configured for optimized output of the given format (default is"pdf"). If

http://www.tug.org/tetex/

GAPDoc 48

"color" or "nocolor" is in the argument list then colors are used or not used, respectively. The
default is to use colors but"nocolor" can be useful for a printable version of a manual (but who
wants to print such manuals?).

5.3.2 GAPDoc2Text

♦ GAPDoc2Text(tree[, bibpath][, width]) (function)

Returns: record containing text files as strings and other information
The argumenttree for this function is a tree describing aGAPDoc XML document as returned

by ParseTreeXMLString (5.2.1) (probably also checked withCheckAndCleanGapDocTree (5.2.8)).
This function produces a text version of the document which can be used withGAP’s online help
(with the "screen" viewer, seeSetHelpViewer (Reference: SetHelpViewer)). It includes title
page, bibliography and index. The bibliography is made from BibXMLext or BibTEX databases, see
7. Their location must be given with the argumentbibpath (as string or directory object).

The output is a record with one component for each chapter (with names"0", "1", ...,"Bib" and
"Ind"). Each such component is again a record with the following components:

text the text of the whole chapter as a string

ssnr list of subsection numbers in this chapter (like[3, 2, 1] for chapter 3, section 2, subsec-
tion 1)

linenr corresponding list of line numbers where the subsections start

len number of lines of this chapter

The result can be written into files with the commandGAPDoc2TextPrintTextFiles (5.3.3).
As a side effect this function also produces themanual.six information which is used for search-

ing in GAP’s online help. This is stored intree .six and can be printed into amanual.six file with
PrintSixFile (5.3.5) (preferably after producing a LATEX version of the document as well and adding
the page number information totree .six, seeGAPDoc2LaTeX (5.3.1) andAddPageNumbersToSix
(5.3.4)).

The text produced by this function contains some markup via ANSI escape sequences. The se-
quences used here are usually ignored by terminals. But theGAP help system will substitute them by
interpreted color and attribute sequences (seeTextAttr (6.1.2)) before displaying them. There is a de-
fault markup used for this but it can also be configured by the user, seeSetGAPDocTextTheme (5.3.6).
Furthermore, the text produced is in UTF-8 encoding. The encoding is also translated on the fly, if
GAPInfo.TermEncoding is set to some encoding supported byEncode (6.2.2), e.g.,"ISO-8859-1"
or "latin1".

With the optional argumentwidth a different length of the output text lines can be chosen. The
default is 76 and all lines in the resulting text start with two spaces. This looks good on a terminal
with a standard width of 80 characters and you probably don’t want to use this argument.

5.3.3 GAPDoc2TextPrintTextFiles

♦ GAPDoc2TextPrintTextFiles(t[, path]) (function)

Returns: nothing
The first argument must be a result returned byGAPDoc2Text (5.3.2). The second argument is

a path for the files to write, it can be given as string or directory object. The text of each chapter is
written into a separate file with namechap0.txt, chap1.txt, ...,chapBib.txt, andchapInd.txt.

GAPDoc 49

If you want to make your document accessible via theGAP online help you must put at least these
files for the text version into a directory, together with the filemanual.six, seePrintSixFile (5.3.5).
Then specify the path to themanual.six file in the packagesPackageInfo.g file, see (Extending:
The PackageInfo.g File).

Optionally you can add thedvi- and pdf-versions of the document which are produced with
GAPDoc2LaTeX (5.3.1) to this directory. The files must have the namesmanual.dvi andmanual.pdf,
respectively. Also you can add the files of the HTML version produced withGAPDoc2HTML (5.3.7) to
this directory, seeGAPDoc2HTMLPrintHTMLFiles (5.3.8). The handler functions inGAP for this help
format detect automatically which of the optional formats of a book are actually available.

5.3.4 AddPageNumbersToSix

♦ AddPageNumbersToSix(tree, pnrfile) (function)

Returns: nothing
Here tree must be the XML tree of aGAPDoc document, returned byParseTreeXMLString

(5.2.1). Runninglatex on the result ofGAPDoc2LaTeX (5.3.1)(tree) produces a filepnrfile
(with extension.pnr). The commandGAPDoc2Text (5.3.2)(tree) creates a componenttree .six
which contains all information about the document for theGAP online help, except the page numbers
in the.dvi, .ps, .pdf versions of the document. This command adds the missing page number
information totree .six.

5.3.5 PrintSixFile

♦ PrintSixFile(tree, bookname, fname) (function)

Returns: nothing
This function prints the.six file fname for a GAPDoc document stored intree with

namebookname . Such a file contains all information about the book which is needed by the
GAP online help. This information must first be created by calls ofGAPDoc2Text (5.3.2) and
AddPageNumbersToSix (5.3.4).

5.3.6 SetGAPDocTextTheme

♦ SetGAPDocTextTheme([optrec]) (function)

Returns: nothing
With this function can readers of the screen version ofGAP manuals which are generated by the

GAPDoc package configure the color and attribute layout of the displayed text. There is a default
which can be reset by calling this function without argument.

As an abbreviation the argumentoptrec can be a string for the known name of a theme. Cur-
rently, there is only"none" which displays just the plain text without any markup.

Otherwise,optrec must be a record. Its entries overwrite the corresponding entries in the de-
fault. To construct valid markup you can useTextAttr (6.1.2). The following components are rec-
ognized:

reset reset to default, don’t change this

Heading chapter and (sub-)section headings

Func function, operation, ... names

GAPDoc 50

Arg argument names in descriptions

Example example code

Package package names

Returns Returns-line in descriptions

URL URLs

Mark Marks in description lists

K GAP keywords

C code or text to type

F file names

B buttons

Emph emphasized text

Ref reference text

BibReset reset for bibliography, don’t change

BibAuthor author names in bibliography

BibTitle titles in bibliography

BibJournal journal names in bibliography

BibVolume volume number in bibliography

BibLabel labels for bibliography entries
Example

gap> # change display of headings to bold green
gap> SetGAPDocTextTheme(rec(
> Heading:=Concatenation(TextAttr.bold, TextAttr.2)));

5.3.7 GAPDoc2HTML

♦ GAPDoc2HTML(tree[, bibpath[, gaproot]][, mtrans]) (function)

Returns: record containing HTML files as strings and other information
The argumenttree for this function is a tree describing aGAPDoc XML document as returned

by ParseTreeXMLString (5.2.1) (probably also checked withCheckAndCleanGapDocTree (5.2.8)).
Without anmtrans argument this function produces an HTML version of the document which
can be read with any Web-browser and also be used withGAP’s online help (seeSetHelpViewer
(Reference: SetHelpViewer)). It includes title page, bibliography, and index. The bibliography is
made from BibTEX databases. Their location must be given with the argumentbibpath (as string or
directory object, if not given the current directory is used). If the third argumentgaproot is given
and is a string then this string is interpreted as relative path toGAP’s main root directory. Reference-
URLs to external HTML-books which begin with theGAP root path are then rewritten to start with

GAPDoc 51

the given relative path. This makes the HTML-documentation portable provided a package is installed
in some standard location below theGAP root.

The output is a record with one component for each chapter (with names"0", "1", ...,"Bib", and
"Ind"). Each such component is again a record with the following components:

text the text of an HTML file containing the whole chapter (as a string)

ssnr list of subsection numbers in this chapter (like[3, 2, 1] for chapter 3, section 2, subsec-
tion 1)

Standard output format withoutmtrans argument
The HTML code produced with this converter conforms to the W3C specification “XHTML 1.0

strict”, seehttp://www.w3.org/TR/xhtml1. First, this means that the HTML files are valid XML
files. Secondly, the extension “strict” says in particular that the code doesn’t contain any explicit font
or color information.

Mathematical formulae are handled as in the text converterGAPDoc2Text (5.3.2). We don’t want
to assume that the browser can use symbol fonts. SomeGAP users like to browse the online help
with lynx, seeSetHelpViewer (Reference: SetHelpViewer), which runs inside the same terminal
windows asGAP.

Using a stylesheet file
The layout information for a browser should be specified in a cascading style sheet (CSS)

file. The GAPDoc package contains an example of such a style sheet, see the filegapdoc.css
in the root directory of the package. This file conforms to the W3C specification CSS 2.0, see
http://www.w3.org/TR/REC-CSS2. You may just copy that file asmanual.css into the directory
which contains the HTML version of your documentation. But, of course, you are free to adjust it
for your package, e.g., change colors or other layout details, add a background image, ... Each of the
HTML files produced by the converters contains a link to this local style sheet file calledmanual.css.

Output format withmtrans argument
Currently, there are two experimental variants of this converter available which handle mathemat-

ical formulae differently. They are accessed via the optional lastmtrans argument.
If this argument is set to"Tth" it is assumed that you have installed the LATEX to HTML translation

programtth. This is used to translate the contents of theM, Math andDisplay elements into HTML
code. Note that the resulting code is not compliant with any standard. Formally it is “XHTML 1.0
Transitional”, it contains explicit font specifications and the characters of mathematical symbols are
included via their position in a “Symbol” font. Some graphical browsers can be configured to display
this in a useful manner, checkthe Tth homepagefor more details.

If the mtrans argument is set to"MathML" it is assumed that you have installed the translation
programttm, see alsothe Tth homepage). This is used to translate the contents of theM, Math and
Display elements to MathML 2.0 markup. The resulting files should conform to the ”XHTML 1.1
plus MathML 2.0” standard, seethe W3C informationfor more details. It is expected that the next
generation of graphical browsers will be able to render such files (try for exampleMozilla, at least
0.9.9). You must copy the.xsl and.css files from GAPDocs mathml directory to the directory
containing the output files. The translation withttm is still experimental. The output of this converter
variant is garbage for browsers which don’t support MathML.

This function works by running recursively through the document tree and calling a han-
dler function for eachGAPDoc XML element. Many of these handler functions (usually in
GAPDoc2TextProcs.<ElementName>) are not difficult to understand (the greatest complications

http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/REC-CSS2
http://hutchinson.belmont.ma.us/tth/
http://hutchinson.belmont.ma.us/tth/
http://www.w3.org/TR/MathML2/

GAPDoc 52

are some commands for index entries, labels or the output of page number information). So it should
be easy to adjust certain details to your own taste by slight modifications of the program.

The result of this converter can be written to files with the command
GAPDoc2HTMLPrintHTMLFiles (5.3.8).

5.3.8 GAPDoc2HTMLPrintHTMLFiles

♦ GAPDoc2HTMLPrintHTMLFiles(t[, path]) (function)

Returns: nothing
The first argument must be a result returned byGAPDoc2HTML (5.3.7). The second argument is a

path for the files to write, it can be given as string or directory object. The text of each chapter is writ-
ten into a separate file with namechap0.html, chap1.html, ...,chapBib.html, andchapInd.html.

The experimental versions which are produced withtth or ttm use different names for the files,
namelychap0 sym.html, and so on for files which need symbol fonts andchap0 mml.xml for files
with MathML translations.

You may also want to place a style sheet filemanual.css into the same directory as the
HTML files. You can copy for example the filegapdoc.css in the root directory of theGAP-
Doc package (Filename(Directory(PackageInfo("gapdoc")[1].InstallationPath),
"gapdoc.css");).

5.3.9 InfoGAPDoc

♦ InfoGAPDoc (info class)

The default level of this info class is 1. The converter functions forGAPDoc documents are then
printing some information. You can suppress this by setting the level ofInfoGAPDoc to 0. With level
2 there may be some more information for debugging purposes.

5.4 Testing Manual Examples

We also provide some tools to check the examples given in<Example>-elements.

5.4.1 ManualExamples

♦ ManualExamples(path, main, files, units) (function)

Returns: a list of strings
♦ ManualExamplesXMLTree(tree, units) (function)

Returns: a list of strings
The argumenttree must be a parse tree of aGAPDoc document, seeParseTreeXMLFile (5.2.1).

The functionManualExamplesXMLTree returns a list of strings containing the content of<Example>
elements. For each example there is a comment line showing the paragraph number and (if avail-
able) the original location of this example with file and line number. Depending on the argument
units several examples are colleected in one string. Recognized values forunits are"Chapter",
"Section", "Subsection" or "Single". The latter means that each example is in a separate string.
For all other value ofunits just one string with all examples is returned.

GAPDoc 53

The argumentspath , main and files of ManualExamples are the same as for
ComposedDocument (4.2.1). This function first contructs and parses theGAPDoc document and then
appliesManualExamplesXMLTree.

5.4.2 ReadTestExamplesString

♦ ReadTestExamplesString(str) (function)

Returns: true or false
♦ TestExamplesString(str[, print]) (function)

Returns: true or a list of records
♦ TestManualExamples([tree][,][path, main, files]) (function)

Returns: true or a list of records
The argumentstr must be a string containing lines for the test mode ofGAP. The function

ReadTestExamplesString just runsReadTest (Reference: ReadTest) on this code.
The functionTestExamplesString returnstrue if ReadTest (Reference: ReadTest) does not

find differences. In the other case it returns a list of record, where each record describes one difference.
The record have fields.line with the line number of the relevant input line ofstr , .input with the
input line and.diff with the differences as displayed byReadTest (Reference: ReadTest). If the
optional argumentprint is given and set totrue then the differences are also printed before the
function returns.

The arguments of the functionTestManualExamples is either a parse tree of aGAPDoc document
or the information to build and parse such a document. The function extracts all examples in"Single"
units and appliesTestExamplesString to them.

Example
gap> TestExamplesString("gap> 1+1;\n2\n");
true
gap> TestExamplesString("gap> 1+1;\n2\ngap> 2+3;\n4\n");
[rec(line := 3, input := "gap> 2+3;", diff := "+ 5\n- 4\n")]
gap> TestExamplesString("gap> 1+1;\n2\ngap> 2+3;\n4\n", true);
----------- bad example --------
line: 3
input: gap> 2+3;
differences:
+ 5
- 4
[rec(line := 3, input := "gap> 2+3;", diff := "+ 5\n- 4\n")]

Chapter 6

String and Text Utilities

6.1 Text Utilities

This section describes some utility functions for handling texts withinGAP. They are used by the
functions in theGAPDoc package but may be useful for other purposes as well. We start with some
variables containing useful strings and go on with functions for parsing and reformatting text.

6.1.1 WHITESPACE

♦ WHITESPACE (global variable)

♦ CAPITALLETTERS (global variable)

♦ SMALLLETTERS (global variable)

♦ LETTERS (global variable)

♦ DIGITS (global variable)

♦ HEXDIGITS (global variable)

These variables contain sets of characters which are useful for text processing. They are defined
as follows.

WHITESPACE " \n\t\r"

CAPITALLETTERS "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

SMALLLETTERS "abcdefghijklmnopqrstuvwxyz"

LETTERS concatenation of CAPITALLETTERS and SMALLLETTERS

DIGITS "0123456789"

HEXDIGITS "0123456789ABCDEFabcdef"

6.1.2 TextAttr

♦ TextAttr (global variable)

The recordTextAttr contains strings which can be printed to change the terminal attribute for the
following characters. This only works with terminals which understand basic ANSI escape sequences.

54

GAPDoc 55

Try the following example to see if this is the case for the terminal you are using. It shows the effect
of the foreground and background color attributes and of the.bold, .blink, .normal, .reverse
and.underscore which can partly be mixed.

Example
extra := ["CSI", "reset", "delline", "home"];;
for t in Difference(RecNames(TextAttr), extra) do

Print(TextAttr.(t), "TextAttr.", t, TextAttr.reset,"\n");
od;

The suggested defaults for colors0..7 are black, red, green, brown, blue, magenta, cyan, white. But
this may be different for your terminal configuration.

The escape sequence.delline deletes the content of the current line and.home moves the cursor
to the beginning of the current line.

Example
for i in [1..5] do

Print(TextAttr.home, TextAttr.delline, String(i,-6), "\c");
Sleep(1);

od;

Whenever you use this in some printing routines you should make it optional. Use these attributes
only, when the variableANSI COLORS has the valuetrue.

6.1.3 FormatParagraph

♦ FormatParagraph(str[, len][, flush][, attr][, widthfun],]]) (function)

Returns: the formatted paragraph as string
This function formats a text given in the stringstr as a paragraph. The optional arguments have

the following meaning:

len the length of the lines of the resulting text (default is78)

flush can be"left", "right", "center" or "both", telling that lines should be flushed left,
flushed right, centered or left-right justified, respectively (default is"both")

attr is a list of two strings; the first is prepended and the second appended to each line of the
result (can for example be used for indenting,[" ", ""], or some markup,[TextAttr.bold,
TextAttr.reset], default is["", ""])

widthfun must be a function which returns the display width of text instr . The default isLength
assuming that each byte corresponds to a character of width one. Ifstr is given inUTF-8
encoding one can useWidthUTF8String (6.2.3) here.

This function tries to handle markup with the escape sequences explained inTextAttr (6.1.2) cor-
rectly.

Example
gap> str := "One two three four five six seven eight nine ten eleven.";;
gap> Print(FormatParagraph(str, 25, "left", ["/* ", " */"]));
/* One two three four five */
/* six seven eight nine ten */
/* eleven. */

GAPDoc 56

6.1.4 SubstitutionSublist

♦ SubstitutionSublist(list, sublist, new[, flag]) (function)

Returns: the changed list
This function looks for (non-overlapping) occurrences of a sublistsublist in a list list (com-

parePositionSublist (Reference: PositionSublist)) and returns a list where these are substituted
with the listnew.

The optional argumentflag can either be"all" (this is the default if not given) or"one". In
the second case only the first occurrence ofsublist is substituted.

If sublist does not occur in list then list itself is returned (and not a
ShallowCopy(list)).

Example
gap> SubstitutionSublist("xababx", "ab", "a");
"xaax"

6.1.5 StripBeginEnd

♦ StripBeginEnd(list, strip) (function)

Returns: changed string
Here list andstrip must be lists. This function returns the sublist of list which does not

contain the leading and trailing entries which are entries ofstrip . If the result is equal tolist then
list itself is returned.

Example
gap> StripBeginEnd(" ,a, b,c, ", ", ");
"a, b,c"

6.1.6 StripEscapeSequences

♦ StripEscapeSequences(str) (function)

Returns: string without escape sequences
This function returns the string one gets from the stringstr by removing all escape sequences

which are explained inTextAttr (6.1.2). If str does not contain such a sequence thenstr itself is
returned.

6.1.7 RepeatedString

♦ RepeatedString(c, len) (function)

Here c must be either a character or a string andlen is a non-negative number. Then
RepeatedString returns a string of lengthlen consisting of copies ofc .

Example
gap> RepeatedString(’=’,51);
"==="
gap> RepeatedString("*=",51);
"*=*"

GAPDoc 57

6.1.8 NumberDigits

♦ NumberDigits(str, base) (function)

Returns: integer
♦ DigitsNumber(n, base) (function)

Returns: string
The argumentstr of NumberDigits must be a string consisting only of an optional leading’-’

and characters in0123456789abcdefABCDEF, describing an integer in basebase with 2≤ base ≤
16. This function returns the corresponding integer.

The functionDigitsNumber does the reverse.
Example

gap> NumberDigits("1A3F",16);
6719
gap> DigitsNumber(6719, 16);
"1A3F"

6.1.9 PositionMatchingDelimiter

♦ PositionMatchingDelimiter(str, delim, pos) (function)

Returns: position as integer orfail
Here str must be a string anddelim a string with two different characters. This function

searches the smallest positionr of the characterdelim [2] in str such that the number of occur-
rences ofdelim [2] in str between positionspos +1 andr is by one greater than the corresponding
number of occurrences ofdelim [1].

If such anr exists, it is returned. Otherwisefail is returned.
Example

gap> PositionMatchingDelimiter("{}x{ab{c}d}", "{}", 0);
fail
gap> PositionMatchingDelimiter("{}x{ab{c}d}", "{}", 1);
2
gap> PositionMatchingDelimiter("{}x{ab{c}d}", "{}", 6);
11

6.1.10 WordsString

♦ WordsString(str) (function)

Returns: list of strings containing the words
This returns the list of words of a text stored in the stringstr . All non-letters are considered as

word boundaries and are removed.
Example

gap> WordsString("one_two \n three!?");
["one", "two", "three"]

6.1.11 Base64String

♦ Base64String(str) (function)

♦ StringBase64(bstr) (function)

Returns: a string

GAPDoc 58

The first function translates arbitrary binary data given as a GAP string into abase 64encoded
string. This encoded string contains only printable ASCII characters and is used in various data
transfer protocols (MIME encoded emails, weak password encryption, ...). We use the specification in
RFCÂ 2045.

The second function has the reverse functionality. Here we also accept the characters- instead
of +/ as last two characters. Whitespace is ignored.

Example
gap> b := Base64String("This is a secret!");
"VGhpcyBpcyBhIHNlY3JldCEA="
gap> StringBase64(b);
"This is a secret!"

6.2 Unicode Strings

TheGAPDoc package provides some tools to deal with unicode characters and strings. These can be
used for recoding text strings between various encodings.

6.2.1 Unicode Strings and Characters

♦ Unicode(list[, encoding]) (operation)

♦ UChar(num) (operation)

♦ IsUnicodeString (filter)

♦ IsUnicodeCharacter (filter)

♦ IntListUnicodeString(ustr) (function)

Unicode characters are described by theircodepoint, an integer in the range from 0 to 221−1. For
details about unicode, seehttp://www.unicode.org.

The function UChar wraps an integernum into a GAP object lying in the filter
IsUnicodeCharacter. UseInt to get the codepoint back. The argumentnum can also be aGAP
character which is then translated to an integer viaINT CHAR (Reference: INT CHAR).

Unicode produces aGAP object in the filterIsUnicodeString. This is a wrapped list of integers
for the unicode characters in the string. The functionIntListUnicodeString gives access to this
list of integers. Basic list functionality is available forIsUnicodeString elements. The entries are in
IsUnicodeCharacter. The argumentlist for Unicode is either a list of integers or aGAP string.
In the latter case anencoding can be specified as string, its default is"UTF-8".

Currently supported encodings can be found inUNICODE RECODE.NormalizedEncodings
(ASCII, ISO-8859-X, UTF-8 and aliases). The encoding"XML" means an ASCII encoding in which
non-ASCII characters are specified by XML character entities. The encoding"URL" is for URL-
encoded (also called percent-encoded strings, as specified in RFC3986 (see here). The listed encod-
ings"LaTeX" and aliases cannot be used withUnicode. See the operationEncode (6.2.2) for mapping
a unicode string to aGAP string.

Example
gap> ustr := Unicode("a and \366", "latin1");
Unicode("a and ö")
gap> ustr = Unicode("a and ö", "XML");
true
gap> IntListUnicodeString(ustr);

http://tools.ietf.org/html/rfc2045
http://www.unicode.org
http://www.ietf.org/rfc/rfc3986.txt

GAPDoc 59

[97, 32, 97, 110, 100, 32, 246]
gap> ustr[7];
’ö’

6.2.2 Encode

♦ Encode(ustr[, encoding]) (operation)

Returns: a GAP string
♦ SimplifiedUnicodeString(ustr[, encoding][, "single"]) (function)

Returns: a unicode string
♦ LowercaseUnicodeString(ustr) (function)

Returns: a unicode string
♦ UppercaseUnicodeString(ustr) (function)

Returns: a unicode string
♦ LaTeXUnicodeTable (global variable)

♦ SimplifiedUnicodeTable (global variable)

♦ LowercaseUnicodeTable (global variable)

The operationEncode translates a unicode stringustr into a GAP string in some specified
encoding . The default encoding is"UTF-8".

Supported encodings can be found inUNICODE RECODE.NormalizedEncodings. Except for
some cases mentioned below characters which are not available in the target encoding are substituted
by ’?’ characters.

If the encoding is "URL" (seeUnicode (6.2.1)) then an optional argumentencreserved can
be given, it must be a list of reserved characters which should be percent encoded; the default is to
encode only the% character.

The encoding"LaTeX" substitutes non-ASCII characters and LATEX special characters by LATEX
code as given in an ordered listLaTeXUnicodeTable of pairs [codepoint, string]. If you have a
unicode character for which no substitution is contained in that list, you will get a warning. In this
case find a substitution and add a corresponding [codepoint, string] pair toLaTeXUnicodeTable using
AddSet (Reference: AddSet). Also, please, tell theGAPDoc authors about your addition, such that
we can extend the listLaTeXUnicodeTable. (Most of the initial entries were generated from lists in
the TEX projects encTEX anducs.)

There is also the variant encoding"LaTeXleavemarkup", which does the same translations for
non-ASCII characters but leaves the LATEX special characters (e.g., any LATEX commands) as they are.

Note that the"LaTeX" encoding can only be used withEncode but not for the opposite translation
with Unicode (6.2.1) (which would need far too complicated heuristics).

The functionSimplifiedUnicodeString can be used to substitute many non-ASCII charac-
ters by related ASCII characters or strings (e.g., by a corresponding character without accents). The
argumentustr and the result are unicode strings, ifencoding is "ASCII" then all non-ASCII char-
acters are translated, otherwise only the non-latin1 characters. If the string"single" in an argument
then only substitutions are considered which don’t make the result string longer. The translations are
stored in a sorted listSimplifiedUnicodeTable. Its entries are of the form[codepoint, trans1,
trans2, ...]. Heretrans1 and so on is either an integer for the codepoint of a substitution char-
acter or it is a list of codepoint integers. If you are missing characters in this list and know a sensible
ASCII approximation, then add an entry (withAddSet (Reference: AddSet)) and tell theGAPDoc

GAPDoc 60

authors about it. (The initial content ofSimplifiedUnicodeTable was mainly generated from the
“transtab” tables by Markus Kuhn.)

The function LowercaseUnicodeString gets and returns a unicode string and translates
each uppercase character to its corresponding lowercase version. This function uses a list
LowercaseUnicodeTable of pairs of codepoint integers. This list was generated using the file
UnicodeData.txt from the unicode definition (field 14 in each row).

The functionUppercaseUnicodeString does the similar translation to uppercase characters.
Example

gap> ustr := Unicode("a and ö", "XML");
Unicode("a and ö")
gap> SimplifiedUnicodeString(ustr, "ASCII");
Unicode("a and oe")
gap> SimplifiedUnicodeString(ustr, "ASCII", "single");
Unicode("a and o")
gap> ustr2 := UppercaseUnicodeString(ustr);;
gap> Print(Encode(ustr2, GAPInfo.TermEncoding), "\n");
A AND Ö

6.2.3 Lengths of UTF-8 strings

♦ WidthUTF8String(str) (function)

♦ NrCharsUTF8String(str) (function)

Returns: an integer
Let str be aGAP string with text in UTF-8 encoding. There are three “lengths” of such a string

which must be distinguished. The operationLength (Reference: Length) returns the number of
bytes and so the memory occupied bystr . The functionNrCharsUTF8String returns the number of
unicode characters instr , that is the length ofUnicode(str).

In many applications the functionWidthUTF8String is more interesting, it returns the number
of columns needed by the string if printed to a terminal. This takes into account that some unicode
characters are combining characters and that there are wide characters which need two columns (e.g.,
for Chinese or Japanese). (To be precise: This implementation assumes that there are no control
characters instr and uses the character width returned by thewcwidth function in the GNU C-
library called with UTF-8 locale.)

Example
gap> # A, German umlaut u, B, zero width space, C, newline
gap> str := Encode(Unicode("AüB​C\n", "XML"));;
gap> Print(str);
AüBC
gap> # umlaut u needs two bytes and the zero width space three
gap> Length(str);
9
gap> NrCharsUTF8String(str);
6
gap> # zero width space and newline don’t contribute to width
gap> WidthUTF8String(str);
4

GAPDoc 61

6.3 Print Utilities

The following printing utilities turned out to be useful for interactive work with texts inGAP. But they
are more general and so we document them here.

6.3.1 PrintTo1

♦ PrintTo1(filename, fun) (function)

♦ AppendTo1(filename, fun) (function)

The argumentfun must be a function without arguments. Everything which is printed by
a call fun() is printed into the filefilename . As with PrintTo (Reference: PrintTo) and
AppendTo (Reference: AppendTo) this overwrites or appends to, respectively, a previous content
of filename .

These functions can be particularly efficient when many small pieces of text shall be written to a
file, because no multiple reopening of the file is necessary.

Example
gap> f := function() local i;
> for i in [1..100000] do Print(i, "\n"); od; end;;
gap> PrintTo1("nonsense", f); # now check the local file ‘nonsense’

6.3.2 StringPrint

♦ StringPrint(obj1[, obj2[, ...]]) (function)

♦ StringView(obj) (function)

These functions return a string containing the output of aPrint or ViewObj call with the same
arguments.

This should be considered as a (temporary?) hack. It would be better to haveString (Reference:
String) methods for allGAP objects and to have a genericPrint (Reference: Print)-function which
just interprets these strings.

6.3.3 PrintFormattedString

♦ PrintFormattedString(str) (function)

This function prints a stringstr . The difference toPrint(str); is that no additional line breaks
are introduced byGAP’s standard printing mechanism. This can be used to print lines which are longer
than the current screen width. In particular one can print text which contains escape sequences like
those explained inTextAttr (6.1.2), where lines may have more characters thanvisible characters.

6.3.4 Page

♦ Page(...) (function)

♦ PageDisplay(obj) (function)

GAPDoc 62

These functions are similar toPrint (Reference: Print) andDisplay (Reference: Display),
respectively. The difference is that the output is not sent directly to the screen, but is piped into the
current pager; seePAGER (Reference: Pager).

Example
gap> Page([1..1421]+0);
gap> PageDisplay(CharacterTable("Symmetric", 14));

6.3.5 StringFile

♦ StringFile(filename) (function)

♦ FileString(filename, str[, append]) (function)

The functionStringFile returns the content of filefilename as a string. This works efficiently
with arbitrary (binary or text) files. If something went wrong, this function returnsfail.

Conversely the functionFileString writes the content of a stringstr into the filefilename .
If the optional third argumentappend is given and equalstrue then the content ofstr is appended
to the file. Otherwise previous content of the file is deleted. This function returns the number of bytes
written orfail if something went wrong.

Both functions are quite efficient, even with large files.

Chapter 7

Utilities for Bibliographies

A standard for collecting references (in particular to mathematical texts) is BibTEX
(http://www.ctan.org/tex-archive/biblio/bibtex/distribs/doc/). A disadvantage
of BibTEX is that the format of the data is specified with the use by LATEX in mind. The data format is
less suited for conversion to other document types like plain text or HTML.

In the first section we describe utilities for using data from BibTEX files in GAP.
In the second section we introduce a new XML based data format BibXMLext for bibliographies

which seems better suited for other tasks than using it with LATEX.
Another section will describe utilities to deal with BibXMLext data inGAP.

7.1 Parsing BibTEX Files

Here are functions for parsing, normalizing and printing reference lists in BibTEX format. The refer-
ence describing this format is [Lam85, Appendix B].

7.1.1 ParseBibFiles

♦ ParseBibFiles(bibfile) (function)

Returns: list [list of bib-records, list of abbrevs, list of expansions]
This function parses a filebibfile (if this file does not exist the extension.bib is appended)

in BibTEX format and returns a list as follows:[entries, strings, texts]. Hereentries is
a list of records, one record for each reference contained inbibfile . Thenstrings is a list of
abbreviations defined by@string-entries inbibfile and texts is a list which contains in the
corresponding position the full text for such an abbreviation.

The records inentries store key-value pairs of a BibTEX reference in the formrec(key1 =
value1, ...). The names of the keys are converted to lower case. The type of the reference (i.e.,
book, article, ...) and the citation key are stored as components.Type and.Label. The records also
have a.From field that says that the data are read from a BibTEX source.

As an example consider the following BibTEX file.
doc/test.bib

@string{ j = "Important Journal" }
@article{ AB2000, Author= "Fritz A. First and Sec, X. Y.",
TITLE="Short", journal = j, year = 2000 }

63

http://www.ctan.org/tex-archive/biblio/bibtex/distribs/doc/

GAPDoc 64

Example
gap> bib := ParseBibFiles("doc/test.bib");
[[rec(From := rec(BibTeX := true), Type := "article",

Label := "AB2000", author := "Fritz A. First and Sec, X. Y."
, title := "Short", journal := "Important Journal",

year := "2000")], ["j"], ["Important Journal"]]

7.1.2 NormalizedNameAndKey

♦ NormalizedNameAndKey(namestr) (function)

Returns: list of strings and names as lists
♦ NormalizeNameAndKey(r) (function)

Returns: nothing
The argumentnamestr must be a string describing an author or a list of authors as described

in the BibTEX documentation in [Lam85, Appendix B 1.2]. The functionNormalizedNameAndKey
returns a list of the form [normalized name string, short key, long key, names as lists]. The first entry
is a normalized form of the input where names are written as “lastname, first name initials”. The
second and third entry are the name parts of a short and long key for the bibliography entry, formed
from the (initials of) last names. The fourth entry is a list of lists, one for each name, where a name is
described by three strings for the last name, the first name initials and the first name(s) as given in the
input.

Note that the determination of the initials is limited to names where the first letter is described by
a single character (and does not contain some markup, say for accents).

The functionNormalizeNameAndKey gets as argumentr a record for a bibliography entry as re-
turned byParseBibFiles (7.1.1). It substitutes.author and.editor fields ofr by their normalized
form, the original versions are stored in fields.authororig and.editororig.

Furthermore a short and a long citation key is generated and stored in components.printedkey
(only if no .key is already bound) and.keylong.

We continue the example fromParseBibFiles (7.1.1).
Example

gap> bib := ParseBibFiles("doc/test.bib");;
gap> NormalizedNameAndKey(bib[1][1].author);
["First, F. A. and Sec, X. Y.", "FS", "firstsec",

[["First", "F. A.", "Fritz A."], ["Sec", "X. Y.", "X. Y."]]]
gap> NormalizeNameAndKey(bib[1][1]);
gap> bib[1][1];
rec(From := rec(BibTeX := true), Type := "article",

Label := "AB2000", author := "First, F. A. and Sec, X. Y.",
title := "Short", journal := "Important Journal", year := "2000",
authororig := "Fritz A. First and Sec, X. Y.", printedkey := "FS00",
keylong := "firstsec2000")

7.1.3 WriteBibFile

♦ WriteBibFile(bibfile, bib) (function)

Returns: nothing
This is the converse ofParseBibFiles (7.1.1). Here bib either must have a format as list

of three lists as it is returned byParseBibFiles (7.1.1). Or bib can be a record as returned by

GAPDoc 65

ParseBibXMLextFiles (7.3.3). A BibTEX file bibfile is written and the entries are formatted in
a uniform way. All given abbreviations are used while writing this file.

We continue the example fromNormalizeNameAndKey (7.1.2). The command
Example

gap> WriteBibFile("nicer.bib", bib);

produces a filenicer.bib as follows:
nicer.bib

@string{j = "Important Journal" }

@article{ AB2000,
author = {First, F. A. and Sec, X. Y.},
title = {Short},
journal = j,
year = {2000},
authororig = {Fritz A. First and Sec, X. Y.},
keylong = {firstsec2000},
printedkey = {FS00}

}

7.1.4 InfoBibTools

♦ InfoBibTools (info class)

The default level of this info class is 1. Functions likeParseBibFiles (7.1.1), StringBibAs...
are then printing some information. You can suppress it by setting the level ofInfoBibTools to 0.
With level 2 there may be some more information for debugging purposes.

7.2 The BibXMLext Format

Bibliographical data in BibTEX files have the disadvantage that the actual data are given in LATEX
syntax. This makes it difficult to use the data for anything but for LATEX, say for representations of
the data as plain text or HTML. For example: mathematical formulae are in LATEX $ environments,
non-ASCII characters can be specified in many strange ways, and how to specify URLs for links if
the output format allows them?

Here we propose an XML data format for bibliographical data which addresses these problems,
it is called BibXMLext. In the next section we describe some tools for generating (an approximation
to) this data format from BibTEX data, and for using data given in BibXMLext format for various
purposes.

The first motivation for this development was the handling of bibliographical data inGAPDoc, but
the format and the tools are certainly useful for other purposes as well.

We started from a DTD bibxml.dtd which is publicly available, say from
http://bibtexml.sf.net/. This is essentially a reformulation of the definition of the BibTEX
format, including several of some widely used further fields. This has already the advantage that a
generic XML parser can check the validity of the data entries, for example for missing compulsary
fields in entries. We applied the following changes and extensions to define the DTD for BibXMLext,
stored in the filebibxmlext.dtd which can be found in the root directory of thisGAPDoc package
(and in AppendixC):

http://bibtexml.sf.net/

GAPDoc 66

names Lists of names in theauthor andeditor fields in BibTEX are difficult to parse. Here they
must be given by a sequence of<name>-elements which each contain an optional<first>-
and a<last>-element for the first and last names, respectively.

<M> and<Math> These elements enclose mathematical formulae, the content is LATEX code (with-
out the$). These should be handled in the same way as the elements with the same names in
GAPDoc, see3.8.2and3.8.1. In particular, simple formulae which have a well defined plain
text representation can be given in<M>-elements.

Encoding Note that in XML files we can use the full range of unicode characters, see
http://www.unicode.org/. All non-ASCII characters should be specified as unicode char-
acters. This makes dealing with special characters easy for plain text or HTML, only for use
with LATEX some sort of translation is necessary.

<URL> These elements are allowed everywhere in the text and should be represented by links in
converted formats which allow this. It is used in the same way as the element with the same
name inGAPDoc, see3.5.5.

<Alt Only="..." > and<Alt Not="..." > Sometimes information should be given in dif-
ferent ways, depending on the output format of the data. This is possible with the<Alt>-
elements with the same definition as inGAPDoc, see3.9.1.

<C> This element should be used to protect text from case changes by converters (the extra{}
characters in BibTEX title fields).

<string key="..." value="..."/ > and<value key="..."/ > The <string>-
element defines key-value pairs which can be used in any field via the<value>-element (not
only for whole fields but also parts of the text).

<other type="..." > This is a generic element for fields which are otherwise not supported.
An arbitrary number of them is allowed for each entry, so any kind of additional data can be
added to entries.

<Wrap Name="..." > This generic element is allowed inside all fields. This markup will be just
ignored (but not the element content) by our standard tools. But it can be a useful hook for
introducing arbitrary further markup (and our tools can easily be extended to handle it).

Extra entities The DTD defines the standard XML entities (2.1.10and the entities (non-
breakable space),– and©right;. Use– in page ranges.

For further details of the DTD we refer to the filebibxmlext.dtd itself which is shown in appendix
C. That file also recalls some information from the BibTEX documentation on how the standard fields
of entries should be used. Which entry types and which fields are supported (and the ordering of
the fields which is fixed by a DTD) can be either read off the DTD, or withinGAP one can use the
functionTemplateBibXML (7.3.9) to get templates for the various entry types.

Here is an example of a BibXMLext document:
doc/testbib.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE file SYSTEM "bibxmlext.dtd">
<file>
<string key="j" value="Important Journal"/>

http://www.unicode.org/

GAPDoc 67

<entry id="AB2000"><article>
<author>
<name><first>Fritz A.</first><last>First</last></name>
<name><first>X. Y.</first><last>Secőnd</last></name>

</author>
<title>The <Wrap Name="Package"> <C>F</C>ritz</Wrap> package for the

formula <M>xˆy - l_{{i+1}} \rightarrow \mathbb{R}</M></title>
<journal><value key="j"/></journal>
<year>2000</year>
<number>13</number>
<pages>13–25</pages>
<note>Online data at <URL Text="Bla Bla Publisher">

http://www.publish.com/˜ImpJ/123#data</URL></note>
<other type="mycomment">very useful</other>

</article></entry>
</file>

There is a standard XML header and aDOCTYPE declaration refering to thebibxmlext.dtd DTD
mentioned above. Local entities could be defined in theDOCTYPE tag as shown in the example in
2.2.3. The actual content of the document is inside a<file>-element, it consists of<string>- and
<entry>-elements. Several of the BibXMLext markup features are shown. We will use this input
document for some examples below.

7.3 Utilities for BibXMLext data

7.3.1 Translating BibTEX to BibXMLext

First we describe a tool which can translate bibliography entries from BibTEX data to BibXMLext
<entry>-elements. It also does some validation of the data. In some cases it is desirable to improve
the result by hand afterwards (editing formulae, adding<URL>-elements, translating non-ASCII char-
acters to unicode, ...).

SeeWriteBibXMLextFile (7.3.4) below for how to write the results to a BibXMLext file.

7.3.2 StringBibAsXMLext

♦ StringBibAsXMLext(bibentry[, abbrvs, vals][, encoding]) (function)

Returns: a string with XML code, orfail
The argumentbibentry is a record representing an entry from a BibTEX file, as returned in the

first list of the result ofParseBibFiles (7.1.1). The optional two argumentsabbrvs andvals can
be lists of abbreviations and substitution strings, as returned as second and third list element in the
result ofParseBibFiles (7.1.1). The optional argumentencoding specifies the character encoding
of the string components ofbibentry . If this is not given it is checked if all strings are valid UTF-8
encoded strings, in that case it is assumed that the encoding is UTF-8, otherwise the latin1 encoding
is assumed.

The functionStringBibAsXMLext creates XML code of an<entry>-element inBibXMLext
format. The result is in UTF-8 encoding and contains some heuristic translations, like splitting name
lists, finding places for<C>-elements, putting formulae in<M>-elements, substituting some char-
acters. The result should always be checked and maybe improved by hand. Some validity checks

GAPDoc 68

are applied to the given data, for example if all non-optional fields are given. If this check fails the
function returnsfail.

As an example we consider again the short BibTEX file doc/test.bib shown in the example for
ParseBibFiles (7.1.1).

Example
gap> bib := ParseBibFiles("doc/test.bib");;
gap> str := StringBibAsXMLext(bib[1][1], bib[2], bib[3]);;
gap> Print(str, "\n");
<entry id="AB2000"><article>

<author>
<name><first>Fritz A.</first><last>First</last></name>
<name><first>X. Y.</first><last>Sec</last></name>

</author>
<title>Short</title>
<journal><value key="j"/></journal>
<year>2000</year>

</article></entry>

The following functions allow parsing of data which are already in BibXMLext format.

7.3.3 ParseBibXMLextString

♦ ParseBibXMLextString(str) (function)

♦ ParseBibXMLextFiles(fname1[, fname2[, ...]]) (function)

Returns: a record with fields.entries, .strings and.entities
The first function gets a stringstr containing aBibXMLext document or a part of it. It returns

a record with the three mentioned fields. Here.entries is a list of partial XML parse trees for the
<entry>-elements instr . The field.strings is a list of key-value pairs from the<string>-
elements instr . And .strings is a list of name-value pairs of the named entities which were used
during the parsing.

The second functionParseBibXMLextFiles uses the first on the content of all files given by
filenamesfname1 and so on. It collects the results in a single record.

As an example we parse the filetestbib.xml shown in7.2.
Example

gap> bib := ParseBibXMLextFiles("doc/testbib.xml");;
gap> RecFields(bib);
["entries", "strings", "entities"]
gap> bib.entries;
[<BibXMLext entry: AB2000>]
gap> bib.strings;
[["j", "Important Journal"]]
gap> bib.entities[1];
["amp", "&#38;"]

7.3.4 WriteBibXMLextFile

♦ WriteBibXMLextFile(fname, bib) (function)

Returns: nothing
This function writes a BibXMLext file with namefname .

GAPDoc 69

There are three possibilities to specify the bibliography entries in the argumentbib . It can be a
list of three lists as returned byParseBibFiles (7.1.1). Or it can be just the first of such three lists
in which case the other two lists are assumed to be empty. To all entries of the (first) list the function
StringBibAsXMLext (7.3.2) is applied and the resulting strings are written to the result file.

The third possibility is thatbib is a record in the format as returned byParseBibXMLextString
(7.3.3) andParseBibXMLextFiles (7.3.3). In this case the entries for the BibXMLext file are pro-
duced withStringXMLElement (5.2.2), and ifbib .entities is bound then it is tried to resubstitute
parts of the string by the given entities withEntitySubstitution (5.2.3).

As an example we write back the result of the example shown forParseBibXMLextFiles (7.3.3)
to an equivalent XML file.

Example
gap> bib := ParseBibXMLextFiles("doc/testbib.xml");;
gap> WriteBibXMLextFile("test.xml", bib);

7.3.5 Bibliography Entries as Records

For working with BibXMLext entries we find it convenient to first translate the parse tree of an entry,
as returned byParseBibXMLextFiles (7.3.3), to a record with the field names of the entry as com-
ponents whose value is the content of the field as string. These strings are generated with respect to
a result type. The records are generated by the following function which can be customized by the
user.

7.3.6 RecBibXMLEntry

♦ RecBibXMLEntry(entry[, restype][, strings][, options]) (function)

Returns: a record with fields as strings
This function generates a content string for each field of a bibliography entry and assigns them to

record components. This content may depend on the requested result type and possibly some given
options.

The arguments are as follows:entry is the parse tree of an<entry> element as returned
by ParseBibXMLextString (7.3.3) or ParseBibXMLextFiles (7.3.3). The optional argument
restype describes the type of the result. This package supports currently the types"BibTeX",
"Text" and "HTML". The default is"BibTeX". The optional argumentstrings must be a list
of key-value pairs as returned in the component.strings in the result ofParseBibXMLextString
(7.3.3). The argumentoptions must be a record.

If the entry contains anauthor field then the result will also contain a component.authorAsList
which is a list containing for each author a list with three entries of the form[last name, first
name initials, first name] (the third entry means the first name as given in the data). Similarly,
aneditor field is accompanied by a component.editorAsList.

The followingoptions are currently supported.
If options.fullname is bound and set totrue then the full given first names for authors and edi-

tors will be used, the default is to use the initials of the first names. Also, ifoptions.namefirstlast
is bound and set totrue then the names are written in the form “first-name(s) last-name”, the default
is the form “last-name, first-name(s)”.

If options.href is bound and set tofalse then the"BibTeX" type result will not use\href
commands. The default is to produce\href commands from<URL>-elements such that LATEX with
thehyperref package can produce links for them.

GAPDoc 70

The content of an<Alt>-element withOnly-attribute is included ifrestype is given in the
attribute and ignored otherwise, and vice versa in case of aNot-attribute. If options.useAlt is
bound, it must be a list of strings to whichrestype is added. Then an<Alt>-element withOnly-
attribute is evaluated if the intersection ofoptions.useAlt and the types given in the attribute is not
empty. In case of aNot-attribute the element is evaluated if this intersection is empty.

If restype is "BibTeX" then the string fields in the result will be recoded withEncode (6.2.2)
and target"LaTeX". If options.hasLaTeXmarkup is bound and set totrue (for example, because
the data are originally read from BibTEX files), then the target"LaTeXleavemarkup" will be used.

We use again the file shown in the example forParseBibXMLextFiles (7.3.3).
Example

gap> bib := ParseBibXMLextFiles("doc/testbib.xml");;
gap> e := bib.entries[1];; strs := bib.strings;;
gap> Print(RecBibXMLEntry(e, "BibTeX", strs), "\n");
rec(

From := rec(
BibXML := true,
type := "BibTeX",
options := rec(

)),
Label := "AB2000",
Type := "article",
authorAsList :=
[["First", "F. A.", "Fritz A."], ["Sec\305\221nd", "X. Y.",

"X. Y."]],
author := "First, F. A. and Sec{\\H o}nd, X. Y.",
title :=
"The \\textsf{ {F}ritz} package for the \n formula $xˆy - l\

_{{i+1}} \\rightarrow \\mathbb{R}$",
journal := "Important Journal",
year := "2000",
number := "13",
pages := "13{\\textendash}25",
note :=
"Online data at \\href {http://www.publish.com/˜ImpJ/123#data} {Bla\

Bla Publisher}",
mycomment := "very useful",
printedkey := "FS00")

gap> Print(RecBibXMLEntry(e, "HTML", strs).note, "\n");
Online data at Bla Bla\
Publisher

7.3.7 AddHandlerBuildRecBibXMLEntry

♦ AddHandlerBuildRecBibXMLEntry(elementname, restype, handler) (function)

Returns: nothing
The argumentelementname must be the name of an entry field supported by the BibXM-

Lext format, the name of one of the special elements ("C", "M", "Math", "URL" or of the
form "Wrap:myname" or any string"mytype" (which then corresponds to entry fields<other
type="mytype">). The string"Finish" has an exceptional meaning, see below.

GAPDoc 71

restype is a string describing the result type for which the handler is installed, see
RecBibXMLEntry (7.3.6).

For both arguments,elementname and restype , it is also possible to give lists of the de-
scribed ones for installing several handler at once.

The argumenthandler must be a function with five arguments of the formhandler (entry,
r, restype, strings, options). Here entry is a parse tree of a BibXMLext<entry>-
element,r is a node in this tree for an elementelementname , and restype , strings and
options are as explained inRecBibXMLEntry (7.3.6). The function should return a string repre-
senting the content of the noder . If elementname is of the form"Wrap:myname" the handler is
used for elements of form<Wrap Name="myname">...</Wrap>.

If elementname is "Finish" the handler should look like above except that nowr is the record
generated byRecBibXMLEntry (7.3.6) just before it is returned. Here the handler should return noth-
ing. It can be used to manipulate the recordr , for example for changing the encoding of the strings
or for adding some more components.

The installed handler is called byBuildRecBibXMLEntry(entry , r , restype , strings ,
options). The string for the whole content of an element can be generated by
ContentBuildRecBibXMLEntry(entry , r , restype , strings , options).

We continue the example fromRecBibXMLEntry (7.3.6) and install a handler for the<Wrap
Name="Package">-element such that LATEX puts its content in a sans serif font.

Example
gap> AddHandlerBuildRecBibXMLEntry("Wrap:Package", "BibTeX",
> function(entry, r, restype, strings, options)
> return Concatenation("\\textsf{", ContentBuildRecBibXMLEntry(
> entry, r, restype, strings, options), "}");
> end);
gap>
gap> Print(RecBibXMLEntry(e, "BibTeX", strs).title, "\n");
The \textsf{ {F}ritz} package for the

formula $xˆy - l_{{i+1}} \rightarrow \mathbb{R}$
gap> Print(RecBibXMLEntry(e, "Text", strs).title, "\n");
The Fritz package for the

formula xˆy - l_{i+1} -> R

7.3.8 StringBibXMLEntry

♦ StringBibXMLEntry(entry[, restype][, strings][, options]) (function)

Returns: a string
The arguments of this function have the same meaning as inRecBibXMLEntry (7.3.6) but the

return value is a string representing the bibliography entry in a format specified byrestype (default
is "BibTeX").

Currently, the following cases forrestype are supported:

"BibTeX" A string with BibTEX source code is generated.

"Text" A text representation of the text is returned. Ifoptions.ansi is bound it must be a record.
The components must have namesBib Label, Bib author, and so on for all fieldnames. The
value of each component is a pair of strings which will enclose the content of the field in the
result or the first of these strings in which case the default for the second isTextAttr.reset

GAPDoc 72

(seeTextAttr (6.1.2)). If you give an empty record here, some default ANSI color markup
will be used.

"HTML" An HTML representation of the bibliography entry is returned. The text from each field is
enclosed in markup (mostly-elements) with theclass attribute set to the field name.
This allows a detailed layout of the code via a style sheet file.

We use again the file shown in the example forParseBibXMLextFiles (7.3.3).
Example

gap> bib := ParseBibXMLextFiles("doc/testbib.xml");;
gap> e := bib.entries[1];; strs := bib.strings;;
gap> ebib := StringBibXMLEntry(e, "BibTeX", strs);;
gap> PrintFormattedString(ebib);
@article{ AB2000,

author = {First, F. A. and Sec{\H o}nd, X. Y.},
title = {The \textsf{ {F}ritz} package for the formula $xˆy -

l_{{i+1}} \rightarrow \mathbb{R}$},
journal = {Important Journal},
number = {13},
year = {2000},
pages = {13{\textendash}25},
note = {Online data at \href

{http://www.publish.com/˜ImpJ/123#data} {Bla Bla
Publisher}},

mycomment = {very useful},
printedkey = {FS00}

}
gap> etxt := StringBibXMLEntry(e, "Text", strs);;
gap> etxt := SimplifiedUnicodeString(Unicode(etxt), "latin1", "single");;
gap> etxt := Encode(etxt, GAPInfo.TermEncoding);;
gap> PrintFormattedString(etxt);
[FS00] First, F. A. and Second, X. Y., The Fritz package for the
formula xˆy - l_{i+1} -> R, Important Journal, 132000, 13-25, Online
data at Bla Bla Publisher (http://www.publish.com/˜ImpJ/123#data)

The following command may be useful to generate completly new bibliography entries in BibXM-
Lext format. It also informs about the supported entry types and field names.

7.3.9 TemplateBibXML

♦ TemplateBibXML([type]) (function)

Returns: list of types or string
Without an argument this function returns a list of the supported entry types in BibXMLext docu-

ments.
With an argumenttype of one of the supported types the function returns a string which is a

template for a corresponding BibXMLext entry. Optional field elements have a* appended. If an
element has the wordOR appended, then either this element or the next must/can be given, not both. If
AND/OR is appended then this and/or the next can/must be given. Elements which can appear several
times have a+ appended. Places to fill are marked by anX.

Example
gap> TemplateBibXML();
["article", "book", "booklet", "manual", "techreport",

GAPDoc 73

"mastersthesis", "phdthesis", "inbook", "incollection",
"proceedings", "inproceedings", "conference", "unpublished", "misc"
]
gap> Print(TemplateBibXML("inbook"));
<entry id="X"><inbook>

<author>
<name><first>X</first><last>X</last></name>+

</author>OR
<editor>
<name><first>X</first><last>X</last></name>+

</editor>
<title>X</title>
<chapter>X</chapter>AND/OR
<pages>X</pages>
<publisher>X</publisher>
<year>X</year>
<volume>X</volume>*OR
<number>X</number>*
<series>X</series>*
<type>X</type>*
<address>X</address>*
<edition>X</edition>*
<month>X</month>*
<note>X</note>*
<key>X</key>*
<annotate>X</annotate>*
<crossref>X</crossref>*
<abstract>X</abstract>*
<affiliation>X</affiliation>*
<contents>X</contents>*
<copyright>X</copyright>*
<isbn>X</isbn>*OR
<issn>X</issn>*
<keywords>X</keywords>*
<language>X</language>*
<lccn>X</lccn>*
<location>X</location>*
<mrnumber>X</mrnumber>*
<mrclass>X</mrclass>*
<mrreviewer>X</mrreviewer>*
<price>X</price>*
<size>X</size>*
<url>X</url>*
<category>X</category>*
<other type="X">X</other>*+

</inbook></entry>

Appendix A

The File 3k+1.xml

Here is the complete source of the exampleGAPDoc document3k+1.xml discussed in Section1.2.
3k+1.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- A complete "fake package" documentation
$Id: app3k1.xml,v 1.3 2007/02/20 16:56:27 gap Exp $

-->

<!DOCTYPE Book SYSTEM "gapdoc.dtd">

<Book Name="3k+1">

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Authör
<Email>3kplusone@dev.null</Email>

</Author>

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.

</Copyright>
</TitlePage>

<TableOfContents/>

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>
<Section Label="sec:theory"> <Heading>Theory</Heading>

Let <M>k \in \N</M> be a natural number. We consider the sequence
<M>n(i, k), i \in \N,</M> with <M>n(1, k) = k</M> and else
<M>n(i+1, k) = n(i, k) / 2</M> if <M>n(i, k)</M> is even and
<M>n(i+1, k) = 3 n(i, k) + 1</M> if <M>n(i, k)</M> is odd.
<P/>
It is not known whether for any natural number <M>k \in \N</M>
there is an <M>m \in \N</M> with <M>n(m, k) = 1</M>.
<P/>
<Package>ThreeKPlusOne</Package> provides the function <Ref

74

GAPDoc 75

Func="ThreeKPlusOneSequence"/> to explore this for given
<M>n</M>. If you really want to know something about this
problem, see <Cite Key="Wi98"/> or
<URL>http://mathsrv.ku-eichstaett.de/MGF/homes/wirsching/</URL>
for more details (and forget this package).

</Section>

<Section> <Heading>Program</Heading>
In this section we describe the main function of this package.
<ManSection>

<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>
<Description>

This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, if <A>max is
given.

<Example>
gap> ThreeKPlusOneSequence(101);
"Sorry, not yet implemented. Wait for Version 84 of the package"
</Example>

</Description>
</ManSection>

</Section>
</Chapter>

</Body>

<Bibliography Databases="3k+1" />
<TheIndex/>

</Book>

Appendix B

The File gapdoc.dtd

For easier reference we repeat here the complete content of the filegapdoc.dtd.
gapdoc.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!-- ==

gapdoc.dtd - XML Document type definition for GAP documentation
By Frank Lübeck and Max Neunhöffer
== -->

<!-- $Id: gapdoc.dtd,v 1.15 2007/05/21 22:07:18 gap Exp $ -->

<!-- Note that this definition goes "bottom-up" because entities can only
be used after their definition in the file. -->

<!-- ==
Some entities:
== -->

<!-- The standard XML entities: -->

<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&#38;">
<!ENTITY apos "'">
<!ENTITY quot """>

<!-- The following were introduced in GAPDoc version < 1.0, it is no longer
necessary to take care of LaTeX special characters
(we keep the entities with simplified definitions for compatibility) -->

<!ENTITY tamp "&">
<!ENTITY tlt "<">
<!ENTITY tgt ">">
<!ENTITY hash "#">
<!ENTITY dollar "$">
<!ENTITY percent "%">
<!ENTITY tilde "˜">

76

GAPDoc 77

<!ENTITY bslash "\\">
<!ENTITY obrace "{">
<!ENTITY cbrace "}">
<!ENTITY uscore "_">
<!ENTITY circum "ˆ">

<!-- ==
Our predefined entities:
== -->

<!ENTITY nbsp " ">
<!ENTITY ndash "–">
<!ENTITY GAP "<Package>GAP</Package>">
<!ENTITY GAPDoc "<Package>GAPDoc</Package>">
<!ENTITY TeX

"<Alt Only=’LaTeX’>{\TeX}</Alt><Alt Not=’LaTeX’>TeX</Alt>">
<!ENTITY LaTeX

"<Alt Only=’LaTeX’>{\LaTeX}</Alt><Alt Not=’LaTeX’>LaTeX</Alt>">
<!ENTITY BibTeX

"<Alt Only=’LaTeX’>{Bib\TeX}</Alt><Alt Not=’LaTeX’>BibTeX</Alt>">
<!ENTITY MeatAxe "<Package>MeatAxe</Package>">
<!ENTITY XGAP "<Package>XGAP</Package>">
<!ENTITY copyright "©">

<!-- ==
The following describes the "innermost" documentation text which
can occur at various places in the document like for example
section headings. It does neither contain further sectioning
elements nor environments like Enums or Lists.
== -->

<!ENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P | Br |
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Address | Cite | Label |
Ref | Index |
Ignore" >

<!ELEMENT Alt (%InnerText;)*> <!-- This is only to allow "Only" and
"Not" attributes for normal text -->

<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED>

<!-- The following elements declare a certain block of InnerText to
have a certain property. They are non-terminal and can contain
any InnerText recursively. -->

GAPDoc 78

<!ELEMENT Emph (%InnerText;)*> <!-- Emphasize something -->
<!ELEMENT E (%InnerText;)*> <!-- the same as shortcut -->

<!-- The following is an empty element marking a paragraph boundary. -->

<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -->
<!ELEMENT P EMPTY> <!-- the same as shortcut -->

<!-- And here is an element for forcing a line break, not starting
a new paragraph. -->

<!ELEMENT Br EMPTY> <!-- a forced line break -->

<!-- The following elements mark a word or sentence to be of a certain
kind, such that it can be typeset differently. They are terminal
elements that should only contain character data. But we have to
allow Alt elements for handling special characters. For these
elements we introduce a long name - which is easy to remember -
and a short name - which you may prefer because of the shorter
markup. -->

<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword -->
<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->

<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->
<!ELEMENT A (#PCDATA|Alt)*> <!-- Argument (shortcut) -->

<!ELEMENT Code (#PCDATA|Alt|A)*> <!-- GAP code -->
<!ELEMENT C (#PCDATA|Alt|A)*> <!-- GAP code (shortcut) -->

<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->
<!ELEMENT F (#PCDATA|Alt)*> <!-- Filename (shortcut) -->

<!ELEMENT Button (#PCDATA|Alt)*> <!-- "Button" (also Menu, Key) -->
<!ELEMENT B (#PCDATA|Alt)*> <!-- "Button" (shortcut) -->

<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->

<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text -->
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->

<!-- The following elements contain mathematical formulae. They are
terminal elements that contain character data in TeX notation. -->

<!-- Math with well defined translation to text output -->
<!ELEMENT M (#PCDATA|A|Arg|Alt)*>
<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>
<!-- TeX displayed math mode formula -->
<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>

GAPDoc 79

<!-- The following elements contain GAP related text like code,
session logs or examples. They are all terminal elements and
consist of character data which is normally typeset verbatim. The
different types of the elements only control how they are
treated. -->

<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic
example checking mechanism -->

<!ELEMENT Log (#PCDATA)> <!-- This not -->
<!ELEMENT Listing (#PCDATA)> <!-- This is just for code listings -->
<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of

listed code, may appear in
output -->

<!-- One further verbatim element, this is truely verbatim without
any processing and intended for ASCII substitutes of complicated
displayed formulae or tables. -->

<!ELEMENT Verb (#PCDATA)>

<!-- The following elements are for cross-referencing purposes like
URLs, citations, references, and the index. All these elements
are terminal and need special methods to make up the actual
output during document generation. -->

<!ELEMENT URL (#PCDATA|Alt|Link|LinkText)*> <!-- Link, LinkText
variant for case where text needs further markup -->

<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats
that have links like HTML -->

<!ELEMENT Link (%InnerText;)*> <!-- the URL -->
<!ELEMENT LinkText (%InnerText;)*> <!-- text for links, can contain markup -->
<!-- The following two are actually URLs, but the element name determines

the type. -->
<!ELEMENT Email (#PCDATA|Alt|Link|LinkText)*>
<!ELEMENT Homepage (#PCDATA|Alt|Link|LinkText)*>

<!-- Those who still want to give postal addresses can use the following
element. Use
 for specifying typical line breaks -->

<!ELEMENT Address (#PCDATA|Alt|Br)*>

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED

Where CDATA #IMPLIED>

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

<!ELEMENT Ref EMPTY>
<!ATTLIST Ref Func CDATA #IMPLIED

Oper CDATA #IMPLIED

GAPDoc 80

Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED
Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED
Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED
Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text|Number) #IMPLIED> <!-- normally automatic -->

<!-- Note that only one attribute of Ref is used normally. BookName
and Style can be specified in addition to handle external
references and the typesetting style of the reference. -->

<!-- For explicit index entries (Func and so on should cause an
automatically generated index entry). Use the attributes Key,
Subkey for sorting (simplified, without markup). The Subkey value
also gets printed. Use the optional Subkey element if the printed
version needs some markup. -->

<!ELEMENT Index (%InnerText;|Subkey)*>
<!ATTLIST Index Key CDATA #IMPLIED

Subkey CDATA #IMPLIED>
<!ELEMENT Subkey (%InnerText;)*>

<!-- ==
The following describes the normal documentation text which can
occur at various places in the document. It does not contain
further sectioning elements. In addition to InnerText it can contain
environments like enumerations, lists, and such.
== -->

<!ENTITY % Text "%InnerText; | List | Enum | Table">

<!ELEMENT Item (%Text;)*>
<!ELEMENT Mark (%InnerText;)*>
<!ELEMENT BigMark (%InnerText;)*>

<!ELEMENT List (((Mark,Item)|(BigMark,Item)|Item)+)>
<!ATTLIST List Only CDATA #IMPLIED

Not CDATA #IMPLIED>
<!ELEMENT Enum (Item+)>
<!ATTLIST Enum Only CDATA #IMPLIED

Not CDATA #IMPLIED>

<!ELEMENT Table (Caption?, (Row | HorLine)+)>

GAPDoc 81

<!ATTLIST Table Label CDATA #IMPLIED
Only CDATA #IMPLIED
Not CDATA #IMPLIED
Align CDATA #REQUIRED> <!-- A TeX tabular string -->
<!-- We allow | and l,c,r, nothing else -->

<!ELEMENT Row (Item+)>
<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption (%InnerText;)*>

<!-- ==
We start defining some things within the overall structure:
== -->

<!-- The TitlePage consists of several sub-elements: -->

<!ELEMENT TitlePage (Title, Subtitle?, Version?, TitleComment?,
Author+, Date?, Address?, Abstract?, Copyright?,
Acknowledgements? , Colophon?)>

<!ELEMENT Title (%Text;)*>
<!ELEMENT Subtitle (%Text;)*>
<!ELEMENT Version (%Text;)*>
<!ELEMENT TitleComment (%Text;)*>
<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->
<!ELEMENT Date (%Text;)*>
<!ELEMENT Abstract (%Text;)*>
<!ELEMENT Copyright (%Text;)*>
<!ELEMENT Acknowledgements (%Text;)*>
<!ELEMENT Colophon (%Text;)*>

<!-- The following things just specify some information about the
corresponding parts of the Book: -->

<!ELEMENT TableOfContents EMPTY>
<!ELEMENT Bibliography EMPTY>
<!ATTLIST Bibliography Databases CDATA #REQUIRED

Style CDATA #IMPLIED>
<!ELEMENT TheIndex EMPTY>

<!-- ==
The Ignore element can be used everywhere to include further
information in a GAPDoc document which is not intended for the
standard converters (e.g., source code, not yet finished stuff,
and so on. This information can be extracted by special converter
routines, more precise information about the content of an Ignore
element can be given by the "Remark" attribute.
== -->

<!ELEMENT Ignore (%Text;| Chapter | Section | Subsection | ManSection |
Heading)*>

<!ATTLIST Ignore Remark CDATA #IMPLIED>

GAPDoc 82

<!-- ==
Now we go on with the overall structure by defining the sectioning
structure, which includes the Synopsis element:
== -->

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT ManSection (Heading?,
((Func, Returns?) | (Oper, Returns?) |
(Meth, Returns?) | (Filt, Returns?) |
(Prop, Returns?) | (Attr, Returns?) |
Var | Fam | InfoClass)+, Description)>

<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Returns (%Text;)*>
<!ELEMENT Description (%Text;)*>

<!-- Note that the ManSection element is actually a subsection with
respect to labelling, referencing, and counting of sectioning
elements. -->

<!ELEMENT Func EMPTY>
<!ATTLIST Func Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!-- Note that Arg contains the full list of arguments, including
optional parts, which are denoted by square brackets [].
Arguments are separated by whitespace, commas count as
whitespace. -->

<!-- Note further that although Name and Label are CDATA (and not ID)
Label must make up a unique identifier. -->

<!ELEMENT Oper EMPTY>
<!ATTLIST Oper Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Meth EMPTY>
<!ATTLIST Meth Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Filt EMPTY>
<!ATTLIST Filt Name CDATA #REQUIRED

Label CDATA #IMPLIED

GAPDoc 83

Arg CDATA #IMPLIED
Comm CDATA #IMPLIED
Type CDATA #IMPLIED>

<!ELEMENT Prop EMPTY>
<!ATTLIST Prop Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Attr EMPTY>
<!ATTLIST Attr Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Var EMPTY>
<!ATTLIST Var Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT Fam EMPTY>
<!ATTLIST Fam Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT InfoClass EMPTY>
<!ATTLIST InfoClass Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT Heading (%InnerText;)*>

<!ELEMENT Section (%Text;| Heading | Subsection | ManSection)*>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Chapter (%Text;| Heading | Section)*>
<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes -->

<!-- Note that the entity %InnerText; is documentation that contains
neither sectioning elements nor environments like enumerations,
but only formulae, labels, references, citations, and other
terminal elements. -->

<!ELEMENT Appendix (%Text;| Heading | Section)*>
<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes -->

<!-- Note that an Appendix is exactly the same as a Chapter. They
differ only in the numbering. -->

GAPDoc 84

<!-- ==
At last we define the overall structure of a gapdoc Book:
== -->

<!ELEMENT Body (%Text;| Chapter | Section)*>

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,
TheIndex?)>

<!ATTLIST Book Name CDATA #REQUIRED>

<!-- Note that the entity %Text; is documentation that contains
no further sectioning elements but possibly environments like
enumerations, and formulae, labels, references, and citations.
-->

<!-- == -->

Appendix C

The File bibxmlext.dtd

For easier reference we repeat here the complete content of the filebibxmlext.dtdwhich is explained
in 7.2.

bibxmlext.dtd
<?xml version="1.0" encoding="UTF-8"?>
<!--

- (C) Frank Lübeck (http://www.math.rwth-aachen.de/˜Frank.Luebeck)
-
- The BibXMLext data format.
-
- This DTD expresses XML markup similar to the BibTeX language
- specified for LaTeX, or actually its content model.
-
- It is a variation of a file bibxml.dtd developed by the project
- http://bibtexml.sf.net/
-
- For documentation on BibTeX, see
- http://www.ctan.org/tex-archive/biblio/bibtex/distribs/doc/
-
- A previous version of the code originally developed by
- Vidar Bronken Gundersen, http://bibtexml.sf.net/
- Reuse and repurposing is approved as long as this
- notification appears with the code.
-

-->

<!-- ... -->
<!-- Main structure -->

<!-- key-value pairs as in BibTeX @string entries are put in empty elements
(but here they can be used for parts of an entry field as well) -->

<!ELEMENT string EMPTY>
<!ATTLIST string

key CDATA #REQUIRED
value CDATA #REQUIRED >

<!-- entry may contain one of the bibliographic types. -->
<!ELEMENT entry (article | book | booklet |

manual | techreport |

85

GAPDoc 86

mastersthesis | phdthesis |
inbook | incollection |
proceedings | inproceedings |
conference |
unpublished | misc) >

<!ATTLIST entry
id CDATA #REQUIRED >

<!-- file is the documents top element. -->
<!ELEMENT file (string | entry)* >

<!-- ... -->
<!-- Parameter entities -->

<!-- these are additional elements often used, but not included in the
standard BibTeX distribution, these must be added to the
bibliography styles, otherwise these fields will be omitted by
the formatter, we allow an arbitrary number of ’other’ elements
to specify any further information -->

<!ENTITY % n.user " abstract?, affiliation?,
contents?, copyright?,
(isbn | issn)?,
keywords?, language?, lccn?,
location?, mrnumber?, mrclass?, mrreviewer?,
price?, size?, url?, category?, other* ">

<!ENTITY % n.common "key?, annotate?, crossref?,
%n.user;">

<!-- content model used more than once -->

<!ENTITY % n.InProceedings "author, title, booktitle,
year, editor?,
(volume | number)?,
series?, pages?, address?,
month?, organization?, publisher?,
note?, %n.common;">

<!ENTITY % n.PHDThesis "author, title, school,
year, type?, address?, month?,
note?, %n.common;">

<!-- ... -->
<!-- Entries in the BibTeX database -->

<!-- [article] An article from a journal or magazine.
- Required fields: author, title, journal, year.
- Optional fields: volume, number, pages, month, note. -->

<!ELEMENT article (author, title, journal,
year, volume?, number?, pages?,
month?, note?, %n.common;)

GAPDoc 87

>

<!-- [book] A book with an explicit publisher.
- Required fields: author or editor, title, publisher, year.
- Optional fields: volume or number, series, address,
- edition, month, note. -->

<!ELEMENT book ((author | editor), title,
publisher, year, (volume | number)?,
series?, address?, edition?, month?,
note?, %n.common;)

>

<!-- [booklet] A work that is printed and bound, but without a named
- publisher or sponsoring institution
- Required field: title.
- Optional fields: author, howpublished, address, month, year, note. -->

<!ELEMENT booklet (author?, title,
howpublished?, address?, month?,
year?, note?, %n.common;)

>

<!-- [conference] The same as INPROCEEDINGS,
- included for Scribe compatibility. -->

<!ELEMENT conference (%n.InProceedings;)
>

<!-- [inbook] A part of a book, which may be a chapter (or section or
- whatever) and/or a range of pages.
- Required fields: author or editor, title, chapter and/or pages,
- publisher, year.
- Optional fields: volume or number, series, type, address,
- edition, month, note. -->

<!ELEMENT inbook ((author | editor), title,
((chapter, pages?) | pages),
publisher, year, (volume |
number)?, series?, type?,
address?, edition?, month?,
note?, %n.common;)

>

<!--
- > I want to express that the elements a and/or b are legal that is one
- > of them or both must be present in the document instance (see the
- > element content for BibTeX entry ‘InBook’).
- > How do I specify this in my DTD?
-
- Dave Peterson:
- in content model: ((a , b?) | b) if order matters
- ((a , b?) | (b , a?)) otherwise

-->

<!-- [incollection] A part of a book having its own title.
- Required fields: author, title, booktitle, publisher, year.

GAPDoc 88

- Optional fields: editor, volume or number, series, type,
- chapter, pages, address, edition, month, note. -->

<!ELEMENT incollection (author, title,
booktitle, publisher, year,
editor?, (volume | number)?,
series?, type?, chapter?,
pages?, address?, edition?,
month?, note?,
%n.common;)

>

<!-- [inproceedings] An article in a conference proceedings.
- Required fields: author, title, booktitle, year.
- Optional fields: editor, volume or number, series, pages,
- address, month, organization, publisher, note. -->

<!ELEMENT inproceedings (%n.InProceedings;)
>

<!-- [manual] Technical documentation
- Required field: title.
- Optional fields: author, organization, address,
- edition, month, year, note. -->

<!ELEMENT manual (author?, title,
organization?, address?, edition?,
month?, year?, note?, %n.common;)

>

<!-- [mastersthesis] A Master’s thesis.
- Required fields: author, title, school, year.
- Optional fields: type, address, month, note. -->

<!ELEMENT mastersthesis (%n.PHDThesis;)
>

<!-- [misc] Use this type when nothing else fits.
- Required fields: none.
- Optional fields: author, title, howpublished, month, year, note. -->

<!ELEMENT misc (author?, title?,
howpublished?, month?, year?, note?,
%n.common;)

>

<!-- [phdthesis] A PhD thesis.
- Required fields: author, title, school, year.
- Optional fields: type, address, month, note. -->

<!ELEMENT phdthesis (%n.PHDThesis;)
>

<!-- [proceedings] The proceedings of a conference.
- Required fields: title, year.
- Optional fields: editor, volume or number, series,
- address, month, organization, publisher, note. -->

<!ELEMENT proceedings (editor?, title, year,
(volume | number)?, series?,

GAPDoc 89

address?, month?, organization?,
publisher?, note?, %n.common;)

>

<!-- [techreport] A report published by a school or other institution,
- usually numbered within a series.
- Required fields: author, title, institution, year.
- Optional fields: type, number, address, month, note. -->

<!ELEMENT techreport (author, title,
institution, year, type?, number?,
address?, month?, note?, %n.common;)

>

<!-- [unpublished] A document having an author and title, but not
- formally published.
- Required fields: author, title, note.
- Optional fields: month, year. -->

<!ELEMENT unpublished (author, title, note,
month?, year?, %n.common;)

>

<!-- ... -->
<!-- Fields from the standard bibliography styles -->

<!--
- Below is a description of all fields recognized by the standard
- bibliography styles. An entry can also contain other fields, which
- are ignored by those styles.
-
- [address] Usually the address of the publisher or other type of
- institution For major publishing houses, van˜Leunen recommends
- omitting the information entirely. For small publishers, on the other
- hand, you can help the reader by giving the complete address.
-
- [annote] An annotation It is not used by the standard bibliography
- styles, but may be used by others that produce an annotated
- bibliography.
-
- [author] The name(s) of the author(s), here *not* in the format
- described in the LaTeX book. Contains elements <name> which in turn
- contains elements <first>, <last> for the first name (or first names,
- fully written or as initials, and including middle initials) and
- the last name.
-
- [booktitle] Title of a book, part of which is being cited. See the
- LaTeX book for how to type titles. For book entries, use the title
- field instead.
-
- [chapter] A chapter (or section or whatever) number.
-
- [crossref] The database key of the entry being cross referenced.
-
- [edition] The edition of a book-for example, ‘‘Second’’. This

GAPDoc 90

- should be an ordinal, and should have the first letter capitalized, as
- shown here; the standard styles convert to lower case when necessary.
-
- [editor] Name(s) of editor(s), typed as indicated in the LaTeX book.
- If there is also an author field, then the editor field gives the
- editor of the book or collection in which the reference appears.
-
- [howpublished] How something strange has been published. The first
- word should be capitalized.
-
- [institution] The sponsoring institution of a technical report.
-
- [journal] A journal name. Abbreviations are provided for many
- journals; see the Local Guide.
-
- [key] Used for alphabetizing, cross referencing, and creating a label
- when the ‘‘author’’ information (described in Section [ref:] is
- missing. This field should not be confused with the key that appears
- in the \cite command and at the beginning of the database entry.
-
- [month] The month in which the work was published or, for an
- unpublished work, in which it was written. You should use the
- standard three-letter abbreviation, as described in Appendix B.1.3 of
- the LaTeX book.
-
- [note] Any additional information that can help the reader. The first
- word should be capitalized.
-
- [number] The number of a journal, magazine, technical report, or of a
- work in a series. An issue of a journal or magazine is usually
- identified by its volume and number; the organization that issues a
- technical report usually gives it a number; and sometimes books are
- given numbers in a named series.
-
- [organization] The organization that sponsors a conference or that
- publishes a manual.
-
- [pages] One or more page numbers or range of numbers, such as 42-111
- or 7,41,73-97 or 43+ (the ‘+’ in this last example indicates pages
- following that don’t form a simple range). To make it easier to
- maintain Scribe-compatible databases, the standard styles convert a
- single dash (as in 7-33) to the double dash used in TeX to denote
- number ranges (as in 7-33). Here, we suggest to use the entity
- – for a dash in page ranges.
-
- [publisher] The publisher’s name.
-
- [school] The name of the school where a thesis was written.
-
- [series] The name of a series or set of books. When citing an entire
- book, the the title field gives its title and an optional series field
- gives the name of a series or multi-volume set in which the book is
- published.

GAPDoc 91

-
- [title] The work’s title. For mathematical formulae use the <M> or
- <Math> elements explained below (and LaTeX code in the content, without
- surrounding ’$’).
-
- [type] The type of a technical report-for example, ‘‘Research
- Note’’.
-
- [volume] The volume of a journal or multivolume book.
-
- [year] The year of publication or, for an unpublished work, the year
- it was written. Generally it should consist of four numerals, such as
- 1984, although the standard styles can handle any year whose last four
- nonpunctuation characters are numerals, such as ‘(about 1984)’.

-->

<!-- Here is the main extension compared to the original BibXML definition
from which is DTD is derived: We want to allow more markup in some
elements such that we can use the bibliography for high quality
output in other formats than LaTeX.

- <M> and <Math>, mathematical formulae: Specify LaTeX code for "simple"
formulae as content of <M> elements; "simple" means that they can be
translated to a fairly readable ASCII representation as explained in
the GAPDoc documentation on "<M>".
More complicated formulae are given as content of <Math> elements.
(Think about an <Alt> alternative for text or HTML representations.)

- <URL>: use these elements to specify URLs, they can be properly
converted to links if possible in an output format (in that case
the Text attribute is used for the visible text).

- <value key="..."/>: substituted by the value-attribute specified
in a <string key="..." value="..."/> element. Can be used anywhere,
not only for complete fields as in BibTeX.

- <C> protect case changes: should be used instead of {}’s which are
used in BibTeX title fields to protect the case of letters from
changes.

- <Alt Only="...">, <Alt Not="...">, alternatives for different
output formats: Use this to specify alternatives, the GAPDoc
utilities will do some special handling for "Text", "HTML",
and "BibTeX" as output type.

- <Wrap Name="...">, generic wrapper for other markup:
Use this for any other type of markup you are interested in. The
GAPDoc utilities will ignore the markup, but provide a hook
to do install handler functions for them.

-->
<!ELEMENT M (#PCDATA | Alt)* > <!-- math with simple text

representation, in LaTeX -->
<!ELEMENT Math (#PCDATA | Alt)* > <!-- other math in LaTeX -->

GAPDoc 92

<!ELEMENT URL (#PCDATA | Alt | Link | LinkText)* > <!-- an URL -->
<!ATTLIST URL Text CDATA #IMPLIED> <!-- text to be printed

(default is content) -->
<!ELEMENT value EMPTY > <!-- placeholder for value given .. -->
<!ATTLIST value key CDATA #REQUIRED > <!-- .. by key, defined in a string

element -->
<!ELEMENT C (#PCDATA | value | Alt |

M | Math | Wrap | URL)* > <!-- protect from case changes -->
<!ELEMENT Alt (#PCDATA | value | C | Alt |

M | Math | Wrap | URL)* > <!-- specify alternatives for
various types of output -->

<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED > <!-- specify output types in comma and
whitespace separated list (use exactly one of Only or Not) -->

<!ENTITY % withMURL "(#PCDATA | value | M | Math | Wrap | URL | C | Alt)*" >

<!ELEMENT Wrap %withMURL; > <!-- a generic wrapper -->
<!ATTLIST Wrap Name CDATA #REQUIRED > <!-- needs a ’Name’ attribute -->

<!ELEMENT address %withMURL; >
<!-- here we don’t want the complicated definition from the LaTeX book,

use markup for first/last name(s): a <name> element for each
author which contains <first> (optional), <last> elements: -->

<!ELEMENT author (name)* >
<!ELEMENT name (first?, last) >
<!ELEMENT first (#PCDATA) >
<!ELEMENT last (#PCDATA) >

<!ELEMENT booktitle %withMURL; >
<!ELEMENT chapter %withMURL; >
<!ELEMENT edition %withMURL; >
<!-- same as for author field -->
<!ELEMENT editor (name)* >
<!ELEMENT howpublished %withMURL; >
<!ELEMENT institution %withMURL; >
<!ELEMENT journal %withMURL; >
<!ELEMENT month %withMURL; >
<!ELEMENT note %withMURL; >
<!ELEMENT number %withMURL; >
<!ELEMENT organization %withMURL; >
<!ELEMENT pages %withMURL; >
<!ELEMENT publisher %withMURL; >
<!ELEMENT school %withMURL; >
<!ELEMENT series %withMURL; >
<!ELEMENT title %withMURL; >
<!ELEMENT type %withMURL; >
<!ELEMENT volume %withMURL; >
<!ELEMENT year (#PCDATA) >

<!-- These were not listed in the documentation for entry content, but
- appeared in the list of fields in the BibTeX documentation -->

GAPDoc 93

<!ELEMENT annotate %withMURL; >
<!ELEMENT crossref %withMURL; >
<!ELEMENT key (#PCDATA) >

<!-- ... -->
<!-- Other popular fields

-
- From: http://www.ecst.csuchico.edu/˜jacobsd/bib/formats/bibtex.html
- BibTeX is extremely popular, and many people have used it to store
- information. Here is a list of some of the more common fields:
-
- [affiliation] The authors affiliation.
- [abstract] An abstract of the work.
- [contents] A Table of Contents
- [copyright] Copyright information.
- [ISBN] The International Standard Book Number.
- [ISSN] The International Standard Serial Number.
- Used to identify a journal.
- [keywords] Key words used for searching or possibly for annotation.
- [language] The language the document is in.
- [location] A location associated with the entry,
- such as the city in which a conference took place.
- [LCCN] The Library of Congress Call Number.
- I’ve also seen this as lib-congress.
- [mrnumber] The Mathematical Reviews number.
- [mrclass] The Mathematical Reviews class.
- [mrreviewer] The Mathematical Reviews reviewer.
- [price] The price of the document.
- [size] The physical dimensions of a work.
- [URL] The WWW Universal Resource Locator that points to the item being
- referenced. This often is used for technical reports to point to the
- ftp site where the postscript source of the report is located.
-
- When using BibTeX with LaTeX you need
- BibTeX style files to print these data.

-->

<!ELEMENT abstract %withMURL; >
<!ELEMENT affiliation %withMURL; >
<!ELEMENT contents %withMURL; >
<!ELEMENT copyright %withMURL; >
<!ELEMENT isbn (#PCDATA) >
<!ELEMENT issn (#PCDATA) >
<!ELEMENT keywords %withMURL; >
<!ELEMENT language %withMURL; >
<!ELEMENT lccn (#PCDATA) >
<!ELEMENT location %withMURL; >
<!ELEMENT mrnumber %withMURL; >
<!ELEMENT mrclass %withMURL; >
<!ELEMENT mrreviewer %withMURL; >
<!ELEMENT price %withMURL; >
<!ELEMENT size %withMURL; >

GAPDoc 94

<!ELEMENT url %withMURL; >

<!-- Added by Zeger W. Hendrikse
- [category] Category of this bibitem

-->
<!ELEMENT category %withMURL; >

<!-- A container element [other] for any further information, a description
- of the type of data must be given in the attribute ’type’

-->
<!ELEMENT other %withMURL; >
<!ATTLIST other

type CDATA #REQUIRED >

<!-- ... -->
<!-- Predefined/reserved character entities -->

<!ENTITY amp "&#38;">
<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY apos "'">
<!ENTITY quot """>

<!-- Some more generally useful entities -->
<!ENTITY nbsp " ">
<!ENTITY copyright "©">
<!ENTITY ndash "–">

<!-- ... -->
<!-- End of BibXMLext dtd -->

References

[GAP06] The GAP Group, Aachen, St Andrews.GAP – Groups, Algorithms, and Programming,
Version 4.4.9, 2006.http://www.gap-system.org. 8

[Lam85] L. Lamport. LATEX: A Document Preparation System. Addison-Wesley, 1985.22, 35, 63,
64

95

http://www.gap-system.org

Index

A, 33
Abstract, 21
Acknowledgements, 22
AddHandlerBuildRecBibXMLEntry, 70
AddPageNumbersToSix, 49
AddParagraphNumbersGapDocTree, 46
AddRootParseTree, 45
<Align>, 32
Alt, 36
ANSI COLORS,55
Appendix, 24
AppendTo1, 61
ApplyToNodesParseTree, 45
Arg, 33
Attr, 27
Author, 21

B, 34
Base64String, 57
Bibliography, 22
Body, 23
Book, 19
Br, 37
Button, 34

C, 33
CAPITALLETTERS, 54
<Caption>, 32
Chapter, 23
CheckAndCleanGapDocTree, 46
Cite, 29
Code, 33
Colophon, 22
ComposedDocument, 39
ComposedXMLString, 39
Copyright, 21

Address, 21
Date, 21
Description, 25

DIGITS, 54
DigitsNumber, 57
Display, 35
DisplayXMLStructure, 45

E, 32
Email, 30
Emph, 32
Encode, 59
EntitySubstitution, 45
Enum, 31
Example, 34

F, 33
Fam, 28
File, 33
FileString, 62
Filt, 27
FormatParagraph, 55
Func, 25

<#GAPDoc>, 38
GAPDoc2HTML, 50
GAPDoc2HTMLPrintHTMLFiles, 52
GAPDoc2LaTeX, 47
GAPDoc2Text, 48
GAPDoc2TextPrintTextFiles, 48
GetTextXMLTree, 46

Heading, 24
HEXDIGITS, 54
Homepage, 31
<HorLine>, 32

Ignore, 37
<#Include>, 38
Index, 30
InfoBibTools, 65
InfoClass, 28
InfoGAPDoc, 52

96

GAPDoc 97

InfoXMLParser, 46
IntListUnicodeString, 58
IsUnicodeCharacter, 58
IsUnicodeString, 58
Item, 31
<Item> in <Table>, 32

K, 33
Keyword, 33

Label, 29
LaTeXUnicodeTable, 59
LETTERS, 54
List, 31
Listing, 34
Log, 34
LowercaseUnicodeString, 59
LowercaseUnicodeTable, 59

M, 35
MakeGAPDocDoc, 43
ManSection, 25
ManualExamples, 52
ManualExamplesXMLTree, 52
Mark, 31
Math, 35
Meth, 26

NormalizedNameAndKey, 64
NormalizeNameAndKey, 64
NrCharsUTF8String, 60
NumberDigits, 57

Oper, 26
OriginalPositionDocument, 40

P, 37
Package, 34
Page, 61
PageDisplay, 61
Par, 37
ParseBibFiles, 63
ParseBibXMLextFiles, 68
ParseBibXMLextString, 68
ParseTreeXMLFile, 43
ParseTreeXMLString, 43
PositionMatchingDelimiter, 57
PrintFormattedString, 61

PrintSixFile, 49
PrintTo1, 61
Prop, 27

Q, 33
Quoted, 33

ReadTestExamplesString, 53
RecBibXMLEntry, 69
Ref, 28
RemoveRootParseTree, 45
RepeatedString, 56
Returns, 25
<Row>, 32

Section, 24
SetGAPDocTextTheme, 49
SimplifiedUnicodeString, 59
SimplifiedUnicodeTable, 59
SMALLLETTERS, 54
StringBase64, 57
StringBibAsXMLext, 67
StringBibXMLEntry, 71
StringFile, 62
StringPrint, 61
StringView, 61
StringXMLElement, 44
StripBeginEnd, 56
StripEscapeSequences, 56
Subsection, 24
SubstitutionSublist, 56
Subtitle, 20

Table, 32
TableOfContents, 22
TemplateBibXML, 72
TestExamplesString, 53
TestManualExamples, 53
TextAttr, 54
TheIndex, 23
Title, 19
TitleComment, 21
TitlePage, 19

UChar, 58
Unicode, 58
UppercaseUnicodeString, 59
URL, 30

GAPDoc 98

Var, 27
Version, 20

WHITESPACE, 54
WidthUTF8String, 60
WordsString, 57
WriteBibFile, 64
WriteBibXMLextFile, 68

XML, 8
XMLElements, 46

