GAPDoc

(Version 1.0)

May 2007

Frank L ibeck
Max Neunhoffer

Frank L Ubeck — Email: Frank.Luebeck@Math.RWTH-Aachen.De
— Homepagehttp://www.math.rwth-aachen.de/ Frank.Luebeck

Max Neunhoffer — Email: Max.Neunhoeffer@Math.RWTH-Aachen.De
— Homepagehttp://www.math.rwth-aachen.de/ Max.Neunhoeffer

mailto://Frank.Luebeck@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Frank.Luebeck
mailto://Max.Neunhoeffer@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Max.Neunhoeffer

GAPDoc

Copyright

(© 2000-2007 by Frank ibeck and Max Neuriffer
We adopt the copyright regulations ®@AP as detailed in the copyright notice in tB&P manual.

Contents

1

Introduction and Example

1.1 XML

1.2 Acompleteexample.

1.3 Some questions

How To Type aGAPDoc Document
2.1 General XML Syntax. e

211
2.1.2
2.1.3
214
2.15
2.1.6
2.1.7
2.1.8
2.1.9

Head of XML Document i
Comments L
Processing Instructions.
Names in XML and Whitespace

Elements
StartTags. e e
EndTags e
Combined Tags for Empty Elements.

Entities

2.1.10 Special Charactersin XML
2.1.11 Rulesfor Attribute Values.

2.1.12 CDATA

2.1.13 Encodingofan XML Document,
2.1.14 Well Formed and Valid XML Documents
2.2 EnteringGAPDoc Documents e

221
222
2.2.3

Otherspecialcharacters
Mathematical Formulae.
More Entities.

The Document Type Definition

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7

<BOOK> . . e e e e e e e e e e
<TitlePage> o o i e e e e e e e e e e e
<Title> . o o o e e e e e e e e e e e e e e e
<Subtitle> L e e e e e e e e
<Version> o e e e e e e e e e e e e e e e e e
<TitleComment™ v v v v o e e e e e e e e e e e e e
<Author> e e e e e

3.3

3.4

3.5

3.6

3.7

GAPDoc 4

3.2.8 <Date> . .. e e e e e e e 21
3.2.9 <AAAress> . ..t e e e e e e e e e e 21
3.2.10 <Rbstract™ i e e e e e e e e e e e 21
3.2.11 <Copyright> o e e e 21
3.2.12 <Acknowledgements>> i it e e e e e e e e 22
3.2.13 <Colophon™ . . v v v v i e e e e e e e e e e e e 22
3.2.14 <TableOfContents> o i v i it i e e e e e e e 22
3.2.15 <Bibliography> . . . v v v v i e e e e e e e e e e 22
3.216 <TheIndex™ . . v v v v v i e e e e e e e e e e e e e e e e e e e 23
Sectioning Elements. 23
3.3 1 <BoAy> . i e e e 23
3.3.2 <Chapter>> . . v v v i e e e e e e e e e 23
3.3.3 <Heading™ . . . v i i e e e e e e e e 24
334 <Pppendix>> e e e e e e e e 24
3.3.5 <Section> e e 24
3.3.6 <Subsection>> e e e e e e e e e 24
ManSection—a special kind of subsection 25
341 <ManSection>> . . v v i i i e e e e e e e e e e e e e 25
342 <FUNCD & v v o e e e e e e e e e e e e e e e 25
3.4.3 <OPer>> . . e e e e e e e 26
344 <Meth> . . . e e e e e 26
345 <FIilt> .o e 27
34.6 <PTOP> + v v v e e e e e e e e e e e 27
A7 <BALEr> L e e e e e e 27
348 <Var> . .. e e e e 27
349 <Fam> . . . e e e e e 28
3.4.10 <INfoClassS>> . v v v v v v i e e e e e e e e e e e 28
Cross Referencingand Citations., 28
351 <Ref> . . e 28
352 <Label> . . . o e e e e 29
3.5.3 <Cite> . . e 29
354 <Index> i e e e e e e 30
355 <URL> . . o ot e 30
356 <Email> o e e e e e 30
357 <Homepage™ o i e e e e e e e e e 31
Structural Elementslike Lists. 31
3.6.1 <LIst> o o e e e e e 31
3.6.2 <Mark> .. e e e e e e e e e 31
3.6.3 <Item> . . . e e e e e e 31
3.6.4 <ENUMD . o v vt e i e e e e e e e e e e e e 31
3.6.5 <Table> e e 32
Typesof Text e e 32
3.7.1 <Emph>and<E> e 32
3.7.2 <Quoted>and<Q> 33
3.7.3 <Keyword>and<K> ittt e 33
374 <Arg>and<A> e 33

3.7.5 <Code>and<C> i i e, 33

GAPDoc 5

3.7.6 <File>and<F> i i e e 33
3.7.7 <Button>and 34
3.7.8 <Package>> i e e e e e e e e e e e 34
3.7.9 <Listing>> . . v v i e e e e e e e 34
3.7.10 <Log> and<Example > v v v v vt e e e e 34
3711 <Merb> . . . L e 34
3.8 Elements for Mathematical Formulae 35
3.8.1 <Math>and<Display> . . ¢ v v v v v vt e e e e e e 35
3.8.2 <M> L 35
3.9 Everythingelse. 36
391 <ALE> L. e 36
392 <Par>and<P> e 37
3.9.3
 L. e 37
3.9.4 <Ignore> . . oL 37
Distributing a Document into Several Files 38
4.1 TheConventionS. i i i e e e e e e e 38
4.2 AToolfor CollectingaDocument. 39
421 ComposedDOCUMENL e e 39
4.2.2 OriginalPositionDocument 40
The Converters and an XML Parser 41
5.1 Producing Documentation from Source Files. 41
5.1.1 MakeGAPDoCDOC. e 43
5.2 Parsing XML Documents 43
5.2.1 ParseTreeXMLString e e 43
5.2.2 StringXMLElement 44
5.2.3 EntitySubstitution 45
5.2.4 DisplayXMLStructure e 45
5.2.5 ApplyToNodesParseTree. 45
5.2.6 GetTextXMLTree. 0 e i e e e e e e 46
5,27 XMLElements e 46
5.2.8 CheckAndCleanGapDocTree. i v i i i .. 46
5.2.9 AddParagraphNumbersGapDocTree 46
5.2.10 InfoXMLParser. 46
5.3 TheConverters. e e e 47
5.3.1 GAPDoOC2LATEX. . . . o i e 47
5.3.2 GAPDOC2Text e 48
5.3.3 GAPDoc2TextPrintTextFiles 48
5.3.4 AddPageNumbersToSix 49
5.35 PrintSixFile. 49
5.3.6 SetGAPDocTextTheme. 49
5.3.7 GAPDOCZHTML e e e e e e 50
5.3.8 GAPDOC2HTMLPrintHTMLFiles. 52
5.3.9 InfoGAPDOC e 52
5.4 Testing Manual Examples. e 52

5.4.1 ManualExamples 52

GAPDoc

5.4.2 ReadTestExamplesString.

6 String and Text Utilities

6.1 Text Utilities

6.1.1 WHITESPACE e e e
6.1.2 TextAttr e e e e e

6.1.3 Form
6.1.4 Subs

atParagraph e
titutionSublist.

6.1.5 StripBeginEnd e
6.1.6 StripEscapeSequences.
6.1.7 RepeatedString e
6.1.8 NumberDigits. e

6.1.9 Posit
6.1.10 Word
6.1.11 Base
6.2 Unicode Stri

ionMatchingDelimiter
SSHING o
BASHING. e e e
NS, . o e e e

6.2.1 Unicode Stringsand Characters.

6.2.2 Enco

e . .

6.2.3 Lengthsof UTF-8strings

6.3 Print Utilities

6.3.1 PrintTol. e
6.3.2 StringPrint e e
6.3.3 PrintFormattedString

6.3.4 Page

6.3.5 StringFile.

7 Utilities for Bibliog

raphies

7.1 ParsingBibEXFiles
7.1.1 ParseBibFiles
7.1.2 NormalizedNameAndKey.

7.1.3 Write
7.1.4 InfoB
7.2 The BibXML
7.3 Utilities for B

BibFile
ibTools e
extFormat
ibXMLextdata

7.3.1 Translating BibfEX to BibXMLext
7.3.2 StringBibASXMLext
7.3.3 ParseBibXMLextString e

7.3.4 Write

BibXMLextFile.

7.3.5 Bibliography EntriesasRecords.
7.3.6 RecBibXMLENtry e
7.3.7 AddHandlerBuildRecBibXMLEntry.
7.3.8 StringBibXMLEnNntry e
7.3.9 TemplateBibXML

A The File 3k+1.xml

B The File gapdoc.d

td

C The File bibxmlext.dtd

GAPDoc

85

Chapter 1

Introduction and Example

The main purpose of theAPDoc package is to define a file format for documentationGafr-
programs and -packages (s€&A[P0d). The problem is that such documentation should be read-
able in several output formats. For example it should be possible to read the documentation inside
the terminal in whichGAP is running (a text mode) and there should be a printable version in high
typesetting quality (produced by some version gX) It is also popular to viewsAP’s online help

with a Web-browser via an HTML-version of the documentation. Nowadays one ca#TgEeahd
standard viewer programs to produce and view on the sareenor pdf-files with full support of
internal and external hyperlinks. Certainly there will be other interesting document formats and tools
in this direction in the future.

Our aim is to find dormat for writingthe documentation which allows a relatively easy translation
into the output formats just mentioned and which hopefully makes it easy to translate to future output
formats as well.

To make documentation written in tl@APDoc format directly usable, we also provide a set of
programs, called converters, which produce text-, hyperlinKeeKt and HTML-output versions of
aGAPDoc document. These programs are developed by the first named author. They run completely
insideGAP, i.e., no external programs are needed. You only needx andpdflatex to process the
IATEX output. These programs are described in Chapter

1.1 XML

The definition of theGAPDoc format uses XML, the “eXtendible Markup Language”. This is a
standard (defined by the W3C consortium, seep: //www.w3c.org) which lays down a syntax for
adding markup to a document or to some data. It allows to define document structures via introducing
markupelementsand certain relations between them. This is done @oeument type definition

The filegapdoc.dtd contains such a document type definition and is the central part &fAR®oc
package.

The easiest way for getting a good idea about this is probably to look at an example. The Ap-
pendixA contains a short but comple@APDoc document for a fictitious share package. In the next
section we will go through this document, explain basic facts about XML an@A®®Doc document
type, and give pointers to more details in later parts of this documentation.

In the last Sectior..3 of this introductory chapter we try to answer some general questions about
the decisions which lead to tl@APDoc package.

http://www.w3c.org

GAPDoc 9

1.2 A complete example

In this section we recall the lines from the example document in Appehdird give some explana-

tions.
from 3k+1.xml
<?xml version="1.0" encoding="UTF-8"?>

This line just tells a human reader and computer programs that the file is a document with XML

markup and that the text is encoded in the UTF-8 character set (other common encodings are ASCII

or ISO-8895-X encodings).

from 3k+1.xml

<!-- A complete "fake package" documentation
$Id: intro.xml,v 1.10 2007/05/18 16:01:31 gap Exp $

-=>

Everything in a XML file between < !--" and “-->" is a comment and not part of the document
content.

from 3k+1.xml
<!DOCTYPE Book SYSTEM "gapdoc.dtd">

This line says that the document contains markup which is defined in the systemagfilec.dtd
and that the markup obeys certain rules defined in that file (the eadihgneans “document type
definition”). It further says that the actual content of the document consists of an element with name

“Book”. And we can really see that the remaining part of the file is enclosed as follows:
from 3k+1.xml

<Book Name="3k+1">
[...] (content omitted)
</Book>

This demonstrates the basics of the markup in XML. This part of the document is an “element”. It
consists of the “start tag&Book Name="3k+1">, the “element content” and the “end tag/Book >
(end tags always start witti/). This element also has an “attributeime whose “value” is3k+1.

If you know HTML, this will look familiar to you. But there are some important differences: The
element nameook and attribute namgame arecase sensitivelhe value of an attribute muatways
be enclosed in quotes. In XMeveryelement has a start and end tag (which can be combined for
elements defined as “empty”, see for examplbleOfContents/> below).

If you know BTEX, you are familiar with quite different types of markup, for example: The equiv-
alent of theBook element inATEX is \begin{document} ... \end{document}. The sectioning
in IATEX is not done by explicit start and end markup, but implicitly via heading commands like
\section. Other markup is done by using bracgsand putting some commands inside. And for
mathematical formulae one can use $hfer the stariandthe end of the markup. In XMall markup
looks similar to that of theook element.

The content of the book starts with a title page.
from 3k+1.xml

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Authdr
<Email>3kplusone@dev.null</Email>

GAPDoc 10

</Author>

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.
</Copyright>
</TitlePage>

The content of thaitlePage element consists again of elements. In Chaptere describe which
elements are allowed within Bit lePage and that their ordering is prescribed in this case. In the
(stupid) name of the author you see that a German umlaut is used directly (in ISO-latinl encoding).

Contrary to ATpX- or HTML-files this markup does not say anything about the actual layout of
the title page in any output version of the document. It just adds information abomtehringof
pieces of text.

Within thecopyright element there are two more things to learn about XML markup.Jhe>
is a complete element. It is a combined start and end tag. This shortcut is allowed for elements which
are defined to be always “empty”, i.e., to have no content. You may have already guesserl/that
is used as a paragraph separator. Note that empty lines do not separate paragraptigXgs in L

The other construct we see heraispyright;. This is an example of an “entity” in XML and
is a macro for some substitution text. Here we use an entity as a shortcut for a complicated expression
which makes it possible that the teroopyrightis printed as some text likec) in text terminal
output and as a copyright character in other output formatSARDoc we predefine some entities.
Certain “special characters” must be typed via entities, for exampfe “>" and “&” to avoid a
misinterpretation as XML markup. It is possible to define additional entities for your document inside
the<!DOCTYPE ...> declaration, se.2.3

Note that elements in XML must always be properly nested, as in this example. A construct like

<a>...isnotallowed.
from 3k+1.xml

<TableOfContents/>

This is another example of an “empty element”. It just means that a table of contents for the whole
document should be included into any output version of the document.

After this the main text of the document follows inside certain sectioning elements:
from 3k+1.xml

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>
<Section Label="sec:theory"> <Heading>Theory</Heading>
[...] (content omitted)
</Section>
<Section> <Heading>Program</Heading>
[...] (content omitted)
</Section>
</Chapter>
</Body>

These elements are used similarly t@hapter” and {section” in BTpX. But note that the explicit
end tags are necessary here.

The sectioning commands allow to assign an optional attribute “Label”. This can be used for
referring to a section inside the document.

The text of the first section starts as follows. The whitespace in the text is unimportant and the
indenting is not necessary.

GAPDoc 11

from 3k+1.xml
Let <M>k \in \N</M> be a natural number. We consider the sequence
<M>n(i, k), 1 \in \N,</M> with <M>n(l, k) = k</M> and else

Here we come to the interesting question how to type mathematical formula@iR@oc document.

We did not find any alternative for writing formulae ipX syntax. (There is MATHML, but even
simple formulae contain a lot of markup, become quite unreadable and they are cumbersome to type.
Furthermore there seem to be no tools available which translate such formulae in a nice wgi{into T
and text.) So, formulae are typed asAfgX. There are three types of elements containing formulae:
“M”, “Math” and “Display”. The first two are for in-text formulae and the third is for displayed
formulae. Here “M” and “Math” are equivalent, when translatingaPDoc document intoATEX.

But they are handled differently for terminal text (and HTML) output. For the content of an “M”-
element there are defined rules for a translation into well readable terminal text. More complicated
formulae are in “Math” or “Display” elements and they are just printed as they are typed in text output.
So, to make a section well readable inside a terminal window you should try to put as many formulae
as possible into “M"-elements. In our example text we used the notation k) instead ofh_i (k)
because it is easier to read in text mode. See Sec?i@3and3.9for more details.

A few lines further on we find two non-internal references.
from 3k+1.xml
problem, see <Cite Key="Wi98"/> or

<URL>http://mathsrv.ku-eichstaett.de/MGF/homes/wirsching/</URL>

The first within the “Cite”-element is the citation of a book. GAPDoc we use the widely used
BibTeX database format for reference lists. This does not use XML but has a well documented struc-
ture which is easy to parse. And many people have collections of references readily available in this
format. The reference list in an output version of the document is produced with the empty element
from 3k+1.xml

<Bibliography Databases="3k+1" />

close to the end of our example file. The attribute “Databases” give the name(s) of the databia)se (
files which contain the references.

Putting a Web-address into an “URL"-element allows to create a hyperlink in output formats which
allow this.

The second section of our example contains a special kind of subsection defiweboc.
from 3k+1.xml

<ManSection>
<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>
<Description>
This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, 1if <A>max 1is
given.
<Example>
gap> ThreeKPlusOneSequence (101);
"Sorry, not yet implemented. Wait for Version 84 of the package"
</Example>
</Description>
</ManSection>

GAPDoc 12

A “ManSection” contains the description of some function, operation, method, filter and so on. The
“Func”-element describes the name ofuaction (there are also similar elements “Oper”, “Meth”,

“Filt” and so on) and names for its arguments, optional arguments enclosed in square brackets. See
Section3.4 for more details.

In the “Description” we write the argument names as “A’-elements. A good description of a
function should usually contain an example of its use. For this there are some verbatim-like elements
in GAPDoc, like “Example” above (here, clearly, whitespace matters which causes a slightly strange
indenting).

The text contains an internal reference to the first section via the explicitly defined label
sec:theory.

The first section also contains a “Ref’-element which refers to the func-
tion described here. Note that there is no explicit label for such a reference.
The pair <Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/> and <Ref
Func="ThreeKPlusOneSequence"/> does the cross referencing (and hyperlinking if possible)
implicitly via the name of the function.

Here is one further element from our example document which we want to explain.
from 3k+1.xml

<TheIndex/>

This is again an empty element which just says that an output version of the document should contain
an index. Many entries for the index are generated automatically because the “Func” and similar
elements implicitly produce such entries. Itis also possible to include explicit additional entries in the
index.

1.3 Some questions

Are those XML files too ugly to read and edit? Just have a look and decide yourself. The markup
needs more characters than mgsX dr IATEX markup. But the structure of the document is
easier to see. If you configure your favorite editor well, you do not need more key strokes for
typing the markup than ifTgX.

Why do we not use ETEX alone? IATEX is good for writing books. BUtAIpX files are generally
difficult to parse and to process to other output formats like text for browsing in a terminal
window or HTML (or new formats which may become popular in the futu@PDoc markup
is one step more abstract thafigX insofar as it describes meaning instead of appearance of
text. The inner workings ofAIeX are too complicated to learn without pain, which makes it
difficult to overcome problems that occur occasionally.

Why XML and not a newly defined markup language? XML is a well defined standard that is
more and more widely used. Lots of people have thought about it. Years of experience with
SGML went into the design. It is easy to explain, easy to parse and lots of tools are available,
there will be more in the future.

Chapter 2

How To Type aGAPDoc Document

In this chapter we give a more formal description of what you need to start to type documentation
in GAPDoc XML format. Many details were already explained by example in Secti@wof the
introduction.

We donot answer the question “How tarite a GAPDoc document?” in this chapter. You can
(hopefully) find an answer to this question by studying the example in the introductioh,Zead
learning about more details in the reference Chapter

The definite source for all details of the official XML standard with useful annotations is:

http://www.xml.com/axml/axml.html

Although this document must be quite technical, it is surprisingly well readable.

2.1 General XML Syntax

We will now discuss the pieces of text which can occur in a general XML document. We start with
those pieces which do not contribute to the actual content of the document.

2.1.1 Head of XML Document

Each XML document should have a head which states that it is an XML document in some encoding
and which XML-defined language is used. In case Gk®Doc document this should always look as
in the following example.

Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Book SYSTEM "gapdoc.dtd">

See2.1.13for a remark on the “encoding” statement.
(There may be local entity definitions inside e TYPE statement, see Subsectid2.3below.)

2.1.2 Comments

A “comment” in XML starts with the character sequenee!--" and ends with the sequence->".
Between these sequences there must not be two adjacent dashes “

13

http://www.xml.com/axml/axml.html

GAPDoc 14

2.1.3 Processing Instructions

A “processing instruction” in XML starts with the character sequence™ followed by a name
(“xml1” is only allowed at the very beginning of the document to declare it being an XML document,
see2.1.7). After that any characters may follow, except that the ending sequenceariust not occur
within the processing instruction.

And now we turn to those parts of the document which contribute to its actual content.

2.1.4 Names in XML and Whitespace

A*“name” in XML (used for element and attribute identifiers, see below) must start with a letter (in the
encoding of the document) or with a colofi’or underscore * character. The following characters
may also be digits, dots.” or dashes “”.

This is a simplified description of the rules in the standard, which are concerned with lots of
unicode ranges to specify what a “letter” is.

Sequences only consisting of the following characters are consideveutaspaceblanks, tabs,
carriage return characters and new line characters.

2.1.5 Elements

The actual content of an XML document consists of “elements”. An element has some “content” with

a leading “start tag”Z.1.6 and a trailing “end tag”4.1.7). The content can contain further elements

but they must be properly nested. One can define elements whose content is always empty, those
elements can also be entered with a single combinedtad}.

2.1.6 Start Tags

A “start-tag” consists of a less-than-character ‘directly followed (without whitespace) by an ele-
ment name (seR.1.4, optional attributes, optional whitespace, and a greater-than-character “

An “attribute” consists of some whitespace and then its name followed by an equal=Sign *“
which is optionally enclosed by whitespace, and the attribute value, which is enclosed either in single
or double guotes. The attribute value may not contain the type of quote used as a delimiter or the
character <", the character &” may only appear to start an entity, s24.9 We describe ir2.1.11
how to enter special characters in attribute values.

Note especially that no whitespace is allowed between the starihghiaracter and the element
name. The quotes around an attribute value cannot be omitted. The names of elements and attributes
arecase sensitive

2.1.7 End Tags

An “end tag” consists of the two characters/
whitespace and a greater-than-character, “

directly followed by the element name, optional

2.1.8 Combined Tags for Empty Elements

Elements which always have empty content can be written with a single tag. This looks like a start
tag (see?2.1.6§ exceptthat the trailing greater-than-charactef™is substituted by the two character
sequence/>".

GAPDoc 15

2.1.9 Entities

An “entity” in XML is a macro for some substitution text. There are two types of entities.

A “character entity” can be used to specify characters in the encoding of the document (can be use-
ful for entering non-ASCII characters which you cannot manage to type in directly). They are entered
with a sequences?”, directly followed by either some decimal digits or ax’*and some hexadec-
imal digits, directly followed by a semicolon *. Using such a character entity is just equivalent to
typing the corresponding character directly.

Then there are references to “named entities”. They are entered with an ampersand character
“&" directly followed by a name which is directly followed by a semicolagri.” Such entities must
be declared somewhere by giving a substitution text. This text is included in the document and the
document is parsed again afterwards. The exact rules are a bit subtle but you probably want to use
this only in simple cases. Predefined entities@aPDoc are described i2.1.10and2.2.3

2.1.10 Special Characters in XML

We have seen that the less-than-charactérdnd the ampersand charactes ‘Start a tag or entity
reference in XML. To get these characters into the document text one has to use entity references,
namely “s1t;” to get “<” and “samp; ” to get “&”. Furthermore %gt;” should sometimes be used to
get “>".

Another possibility is to use @ATA statement explained .1.12

2.1.11 Rules for Attribute Values

Attribute values can contain entities which are substituted recursively. But except for the entities <
or a character entity it is not allowed thakacharacter is introduced by the substitution (there is no
XML parsing for evaluating the attribute value, just entity substitutions).

2.1.12 CDATA

Pieces of text which contain many characters which can be misinterpreted as markup can be enclosed
by the character sequences!“[CDATA[” and “]] >". Everything between these sequences is consid-
ered as content of the document and is not further interpreted as XML text. All the rules explained
so far in this section daot applyto such a part of the document. The only document content which
cannot be entered directly insidecBaATA statement is the sequencg]®-". This can be entered as

“11> " outside thecDATA statement.
Example
A nesting of tags like <a> is not allowed.

2.1.13 Encoding of an XML Document

We suggest to use the UTF-8 encoding for writ&@PDoc XML documents. But the tools described
in Chapters also work with ASCII or the various 1ISO-8859-X encodings (1ISO-8859-1 is also called
latin1 and covers most special characters for western European languages).

GAPDoc 16

2.1.14 Well Formed and Valid XML Documents

We want to mention two further important words which are often used in the context of XML docu-
ments. A piece of text becomes a “well formed” XML document if all the formal rules described in
this section are fulfilled.

But this says nothing about the content of the document. To give this content a meaning one needs
a declaration of the element and corresponding attribute names as well as of named entities which are
allowed. Furthermore there may be restrictions how such elements can be nestetkfifiitisn of
an XML based markup languadggdone in a “document type definition”. An XML document which
contains only elements and entities declared in such a document type definition and obeys the rules
given there is called “valid (with respect to this document type definition)”.

The main file of theGAPDoc package igapdoc.dtd. This contains such a definition of a markup
language. We are not going to explain the formal syntax rules for document type definitions in this
section. But in Chapted we will explain enough about it to understand the §itepdoc.dtd and so
the markup language defined there.

2.2 Entering GAPDoc Documents

Here are some additional rules for writi@pPDoc XML documents.

2.2.1 Other special characters

As GAPDoc documents are used to produégX and HTML documents, the question arises how to
deal with characters with a special meaning for other applications (for example#”, “ s”, “%”,

ETUEAT T R 0 7 (this is a non-breakable space;™in LATEX) have a special meaning

for IATEX and “¢”, “ <", “>" have a special meaning for HTML (and XML). IBAPDoc you can
usually just type these characters directly, it is the task of the converter programs which translate to

some output format to take care of such special characters. The exceptions to this simple rule are:
e & and < must be entered asmp; andslt; as explainedir2.1.1Q
e The content of th&APDoc elements<M>, <Math> and<Display> is IATEX code, se6.8.

e The content of ancAlt> element withonly attribute contains code for the specified output
type, se€8.9.1

Remark: In former versions abAPDoc one had to use particular entities for all the special char-
acters mentioned abovetamp;, shash;, ¢dollar;, &percent;, ˜, &bslash;, &obrace;,
&cbrace;, &uscore;, &circum;, &tlt;, &tgt;). These are no longer needed, but they are still de-
fined for backwards compatibility with old&APDoc documents.

2.2.2 Mathematical Formulae

Mathematical formulae iIGAPDoc are typed as ir[pX. They must be the content of one of three
types of GAPDoc elements concerned with mathematical formulagith”, “Display”, and “M” (see
Sections3.8.1and3.8.2for more details). The first two correspond 48gX’s math mode and display
math mode. The last one is a special form of theth” element type, that imposes certain restrictions
on the content. On the other hand the content oféirelement is processed in a well defined way for
text terminal or HTML output.

GAPDoc 17

Note that the content of these elementigX code, but the special characters™and “s” for
XML must be entered via the entities describe@ifh.10or by using ecDATA statement, se2.1.12

2.2.3 More Entities

In GAPDoc there are some more predefined entities:

&GAP; GAP
&GAPDoc; GAPDoc
&TeX; TeX
&LaTeX; IATEX
&BibTeX; BibTeX
&MeatAxe; MeatAxe
&XGAP; XGAP
©right; | ©
 “
– —

Table: Predefined Entities in th@APDoc system

Heresnbsp; is a non-breakable space character.
One can define further local entities right inside the headZské) of aGAPDoc XML document
as in the following example.

Example
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Book SYSTEM "gapdoc.dtd"
[<!ENTITY MyEntity "some longish <E>text</E> possibly with markup">
1>

These additional definitions go into tke DOCTYPE tag in square brackets. Such new entities are used
like this: sMyEntity;

Chapter 3

The Document Type Definition

In this chapter we first explain what a “document type definition” is and then desgrildec . dtd in
detail. That file together with the current chapter define hawA&Doc document has to look like. It
can be found in the main directory of te&PDoc package and it is reproduced in Appen8ix

We do not give many examples in this chapter which is more intended as a formal reference
for all GAPDoc elements. Instead we provide an extra document with book e cExample
(also accessible from theAP online help). This uses all the constructs introduced in this chapter
and you can easily compare the source code and how it looks like in the different output formats.
Furthermore recall that many basic things about XML markup were already explained by example in
the introductory chaptet.

3.1 WhatisaDTD?

A document type definition (DTD) is a formal declaration of how an XML document has to be struc-
tured. Itis itself structured such that programs that handle documents can read it and treat the docu-
ments accordingly. There are for example parsers and validity checkers that use the DTD to validate
an XML document, se2.1.14

The main thing a DTD does is to specify which elements may occur in documents of a certain
document type, how they can be nested, and what attributes they can or must have. So, for each
element there is a rule.

Note that a DTD camotensure that a document which is “valid” also makes sense to the convert-
ers! It only says something about the formal structure of the document.

For the remaining part of this chapter we have divided the elemer@aPboc documents into
several subsets, each of which will be discussed in one of the next sections.

See the following three subsections to learn by example, how a DTD works. We do not want to be
too formal here, but just enable the reader to understand the declaratipnsior . dtd. For precise
descriptions of the syntax of DTD’s see again the official standard in:

http://www.xml.com/axml/axml.html

3.2 Overall Document Structure

A GAPDoc document contains on its top level exactly one element with rasae. This element is
declared in the DTD as follows:

18

http://www.xml.com/axml/axml.html

GAPDoc 19

3.2.1 <Book>

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,
TheIndex?)>
<!ATTLIST Book Name CDATA #REQUIRED>

From gapdoc.dtd

After the keyworde LEMENT and the nameook there is a listin parentheses. This is a comma separated
list of names of elements which can occur (in the given order) in the contenBeflaelement.

Each name in such a list can be followed by one of the charact&rs *” or “+”, meaning that the
corresponding element can occur zero or one time, an arbitrary number of times, or at least once,
respectively. Without such an extra character the corresponding element must occur exactly once.
Instead of one name in this list there can also be a list of elements names separatechiaydcters,

this denotes any element with one of the names (i|é.iifeans “or”).

So, thesook element must contain firstid t LlePage element, then an optionakbleOfContents
element, then @&ody element, then zero or more elements of tyg®endix, then an optional
Bibliography element, and finally an optional element of type Index.

Note thatonly these elements are allowed in the content ofrihiek element. No other elements
ortext is allowed in between. An exception of this is that there may be whitespace between the end tag
of one and the start tag of the next element - this should be ignored when the document is processed
to some output format. An element like this is called an element with “element content”.

The second declaration starts with the keywsrdr.1ST and the element nangok. After that
there is a triple of whitespace separated parameters (in general an arbitrary number of such triples,
one for each allowed attribute name). The firgin(e) is the name of an attribute foreok element.

The seconddpaTa) is always the same for all of our declarations, it means that the value of the
attribute consists of “character data”. The third param#&r@QUIRED means that this attribute must

be specified with angook element. Later we will also see optional attributes which are declared as
#IMPLIED.

3.2.2 <TitlePage >

From gapdoc.dtd

<!ELEMENT TitlePage (Title, Subtitle?, Version?, TitleComment?,
Author+, Date?, Address?, Abstract?, Copyright?,
Acknowledgements? , Colophon?)>

Within this element information for the title page is collected. Note that more than one author can
be specified. The elements must appear in this order because there is no sensible way to specify in a
DTD something like “the following elements may occur in any order but each exactly once”.

Before going on with the other elements inside thek element we explain the elements for the
title page.

3.2.3 <Title >

<!ELEMENT Title (%Text;)*>

From gapdoc.dtd

GAPDoc 20
Here is the last construct you need to understand for readipgoc.dtd. The expression%Text;”
is a so-called “parameter entity”. It is something like a macro within the DTD. It is defined as follows:

From gapdoc.dtd
<!ENTITY % Text "%InnerText; | List | Enum | Table">

This means, that every occurrence &féxt;” in the DTD is replaced by the expression
From gapdoc.dtd

$InnerText; | List | Enum | Table

which is then expanded further because of the following definition:
From gapdoc.dtd

<IENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P | Br
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Address | Cite | Label |
Ref | Index" >

These are the only two parameter entities we are using. They expand to lists of element names which
are explained in the sequahdthe keywordé¢PCDATA (concatenated with the “or” character”y.

So, the elementT(itle) is of so-called “mixed content”. It can contaparsed character data
which does not contain further markuppCDAT2) or any of the other above mentioned elements.
Mixed content must always have the asterisk qualifier (likeinle) such that any sequence of
elements (of the above list) and character data can be contained in @aelement.

The 5Text; parameter entity is used in all places in the DTD, where “normal text” should be
allowed, including lists, enumerations, and tables fmgectioning elements.

The%InnerText; parameter entity is used in all places in the DTD, where “inner text” should be
allowed. This means, that no structures like lists, enumerations, and tables are allowed. This is used
for example in headings.

3.2.4 <Subtitle >

<!ELEMENT Subtitle (%Text;)*>

From gapdoc.dtd

Contains the subtitle of the document.

3.25 <Version >
From gapdoc.dtd

<!ELEMENT Version (#PCDATA|Alt)*>

Note that the version can only contain character data and no further markup elements (except for
which is necessary to resolve the entities describe2i2rd. The converters wilhot put the word
“Version” in front of the text in this element.

GAPDoc 21

3.2.6 <TitleComment >
From gapdoc.dtd

<!ELEMENT TitleComment (%Text;)*>

Sometimes a title and subtitle are not sufficient to give a rough idea about the content of a package.
In this case use this optional element to specify an additional text for the front page of the book. This
text should be short, use thestract element (se8.2.10 for longer explanations.

3.2.7 <Author >
From gapdoc.dtd

<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->

As noted in the comment there may be more than one element of this type. This elements should
contain the name of an author and probablyEaai1-address and/or WWWemepage element for

this author, se@®.5.6and3.5.7 You can also specify an individual postal address here, instead of
using theaddress element described below, s@£.9

3.2.8 <Date >

<!ELEMENT Date (#PCDATA)>

From gapdoc.dtd

Only character data is allowed in this element which gives a date for the document. No automatic
formatting is done.

3.2.9 <Address >
From gapdoc.dtd

<!ELEMENT Address (#PCDATA|Alt|Br)*>

This optional element can be used to specify a postal address of the author or the authors. If there are
several authors with different addresses then pubtideess elements inside theuthor elements.

Use theBr element (se8.9.3 to mark the line breaks in the usual formatting of the address on a
letter.

Note that often it is not necessary to use this element because a postal address is easy to find via a
link to a personal web page.

3.2.10 <Abstract >

<!ELEMENT Abstract (%Text;)*>

From gapdoc.dtd

This element contains an abstract of the whole book.

3.2.11 <Copyright >
From gapdoc.dtd

<!ELEMENT Copyright (%Text;)*>

This element is used for the copyright notice. Note ¢hepyright; entity as described in section
2.2.3

GAPDoc 22

3.2.12 <Acknowledgements >

From gapdoc.dtd
<!ELEMENT Acknowledgements (%Text;)*>

This element contains the acknowledgements.

3.2.13 <Colophon >

From gapdoc.dtd

<!ELEMENT Colophon (%Text;)*>

The “colophon” page is used to say something about the history of a document.

3.2.14 <TableOfContents >

<!ELEMENT TableOfContents EMPTY>

From gapdoc.dtd

This element may occur in the»ok element after theitlePage element. If it is present, a table of
contents is generated and inserted into the document. Note that because this element is declared to be
EMPTY one can use the abbreviation

Example
<TableOfContents/>

to denote this empty element.

3.2.15 <Bibliography >
From gapdoc.dtd

<!ELEMENT Bibliography EMPTY>
<!ATTLIST Bibliography Databases CDATA #REQUIRED
Style CDATA #IMPLIED>

This element may occur in theook element after the lastppendix element. If it is present, a
bibliography section is generated and inserted into the document. The attriautesses must be
specified, the names of several data files can be specified, separated by commas.

Two kinds of files can be specifiediatabases: The first are BibfX files as defined inl[am85
Appendix B]. Such files must have a name with extensiofb, and inDatabases the name must
be givenwithoutthis extension. The second are files in BibXMLext format as defined in Settin
These files must have an extensioml and inDatabases thefull name must be specified.

We suggest to use the BibXMLext format because it allows to produce potentially nicer bibliog-
raphy entries in text and HTML documents.

A bibliography style may be specified with tiseyle attribute. The optionaftyle attribute
(for IATEX output of the document) must also be specified without.the: extension (the default
is alpha). See also sectioB.5.3for a description of theite element which is used to include
bibliography references into the text.

GAPDoc 23

3.2.16 <Thelndex >

<!ELEMENT TheIndex EMPTY>

From gapdoc.dtd

This element may occur in theook element after th@ibliography element. If it is present, an
index is generated and inserted into the document. There are elem@#pBhoc which implicitly
generate index entries (e.g@unc (3.4.2) and there is an elementdex (3.5.4for explicitly adding
index entries.

3.3 Sectioning Elements

A GAPDoc book is divided intochapters sections and subsections The idea is of course, that a
chapter consists of sections, which in turn consist of subsections. However for the sake of flexibility,
the rules are not too restrictive. Firstly, text is allowed everywhere in the body of the document (and
not only within sections). Secondly, the chapter level may be omitted. The exact rules are described
below.

Appendicesre a flavor of chapters, occurring after all regular chapters. There is a special type
of subsection calledManSection”. This is a subsection devoted to the description of a function,
operation or variable. It is analogous to a manpage in the UNIX environment. Usually each function,
operation, method, and so on should have its @a#Bect ion.

Cross referencing is done on the levebabsections, respectivelyanSections. The topics in
GAP’s online help are also pointing to subsections. So, they should not be too long.

We start our description of the sectioning elements “top-down”:

3.3.1 <Body>

The Body element marks the main part of the document. It must occur afterahie=0fContents
element. There is a big difference betweerside andoutsideof this element. Whereas regular text
is allowed nearly everywhere in tledy element and its subelements, this is not true foraihside
This has also implications on the handling of whitespa@atsidesuperfluous whitespace is usually
ignored when it occurs between elemeniisside of the Body element whitespace matters because

character data is allowed nearly everywhere. Here is the definition in the DTD:
From gapdoc.dtd

<!ELEMENT Body (%Text;| Chapter | Section)*>

The fact thatChapter and section elements are allowed here leads to the possibility to omit the
chapter level entirely in the document. For a descriptiofTeit; see3.2.3

(Remark: The purpose of this element is to make sure thaliédGAPDoc document has a correct
overall structure, which is only possible when the top elersent has element content.)

3.3.2 <Chapter >

From gapdoc.dtd
<!ELEMENT Chapter (%Text;| Heading | Section)*>
<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes —->

A Chapter element can havelabel attribute, such that this chapter can be referenced later on with
aRref element (see sectiah5.]). Note that you have to specify a label to reference the chapter as
there is no automatic labelling!

GAPDoc 24

Chapter elements can contain text (for a descriptionzotxt; see3.2.3, Section elements,
andHeading elements.

The followingadditionalrule cannot be stated in the DTD because we wantater element to
have mixed content. There musté&eactly oneieading element in thehapter element, containing
the heading of the chapter. Here is its definition:

3.3.3 <Heading >
From gapdoc.dtd

<!ELEMENT Heading (%$InnerText;)*>

This element is used for headingsdhapter, Section, Subsection, andAppendix elements. It
may only contairtInnerText; (for a description sed.2.3.

Each of the mentioned sectioning elements must contain exactly onemlieedihg element (i.e.,
one which is not contained in another sectioning element).

3.3.4 <Appendix >

From gapdoc.dtd
<!ELEMENT Appendix (%$Text;| Heading | Section)*>
<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes —-->

The Appendix element behaves exactly likecaapter element (se@.3.2 except for the position
within the document and the numbering. While chapters are counted with numbers (1., 2., 3., ...) the
appendices are counted with capital letters (A., B., ...).

Again there is an optionalabe1 attribute used for references.

3.3.5 <Section >

From gapdoc.dtd
<!ELEMENT Section (%Text;| Heading | Subsection | ManSection) *>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes —-->

A Section element can havelazbel attribute, such that this section can be referenced later on with a
Ref element (see sectidh5.]). Note that you have to specify a label to reference the section as there
is no automatic labelling!

Section elements can contain text (for a descriptionsotxt; see3.2.3, Heading elements,
and subsections.

There must be exactly one diregiading element in &ection element, containing the heading
of the section.

Note that a subsection is eithesabsection element or alanSection element.

3.3.6 <Subsection >
From gapdoc.dtd

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes —-->

Thesubsection element can havelzbel attribute, such that this subsection can be referenced later
on with aref element (see sectioB.5.1). Note that you have to specify a label to reference the
subsection as there is no automatic labelling!

GAPDoc 25

Subsection elements can contain text (for a descriptionsatxt; see3.2.3, andHeading
elements.

There must be exactly onading element in &ubsection element, containing the heading of
the subsection.

Another type of subsection isManSection, explained now:

3.4 ManSection—a special kind of subsection

ManSections are intended to describe a function, operation, method, variable, or some other technical
instance. Itis analogous to a manpage in the UNIX environment.

3.4.1 <ManSection >
From gapdoc.dtd

<!ELEMENT ManSection (Heading?,

((Func, Returns?) | (Oper, Returns?)
(Meth, Returns?) | (Filt, Returns?)
(Prop, Returns?) | (Attr, Returns?) |

Var | Fam | InfoClass)+, Description)>
<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes —->

<!ELEMENT Returns (%Text;)*>
<!ELEMENT Description (%Text;)*>

TheManSection element can havelambel attribute, such that this subsection can be referenced later
on with aref element (see sectidh5.1). But this is probably rarely necessary because the elements
Func and so on (explained below) generate automatically labels for cross referencing.

The content of alanSection element is one or more elements describing certain iten@Am
each of them optionally followed byreturns element, followed by @aescription element, which
containstText; (see3.2.3 describing it. (Remember to include examples in the description as often
as possible, se@.7.1Q. The classes of itemSAPDoc knows of are: functionsr{inc), operations
(oper), methods¥eth), filters Fi1t), properties¥rop), attributes £ttr), variables {ar), families
(ram), and info classesIffoClass). OneManSection should only describe several of such items
when these are very closely related.

Each element for an item corresponding AP function can be followed by Beturns element.

In output versions of the document the string “Returns: ” will be put in front of the content text. The
text in therReturns element should usually be a short hint about the type of object returned by the
function. This is intended to give a good mnemonic for the use of a function (together with a good
choice of names for the formal arguments).

ManSectionS are also sectioning elements which count as subsections. Usually there should be
noHeading-elementin alanSection, in that case a heading is generated automatically from the first
Func-like element. Sometimes this default behaviour does not look appropriate, for example when
there are severalnc-like elements. For such cases an optioralding is allowed.

3.4.2 <Func>
From gapdoc.dtd

<!ELEMENT Func EMPTY>
<!ATTLIST Func Name CDATA #REQUIRED
Label CDATA #IMPLIED

GAPDoc 26

Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within BanSection element to specify the usage of a function. Tiae
attribute is required and its value is the name of the function. The value ofrthattribute (also
required) contains the full list of arguments including optional parts, which are denoted by square
brackets. The argument names can be separated by whitespace, commas or the square brackets for the
optional arguments, likegrp[, elm]" or"xx[y[z]]".

The name of the function is also used as label for cross referencing. When the name of the function
appears in the text of the document it shoaldaysbe written with there f element, se8.5.1 This
allows to use a unique typesetting style for function names and automatic cross referencing.

If the optionalLabel attribute is given, it is appended (with a colenn between) to the name of
the function for cross referencing purposes. The text of the label can also appear in the document text.
So, it should be a kind of short explanation.

Example
<Func Arg="x[, y]" Name="LibFunc" Label="for my objects"/>

The optionalcomn attribute should be a short description of the function, usually at most one line
long.

This element automatically produces an index entry with the name of the function and, if present,
the text of theLabel attribute as subentry (see aB2.16and3.5.9.

3.4.3 <Oper>

From gapdoc.dtd
<!ELEMENT Oper EMPTY>

<!ATTLIST Oper Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used withinienSection element to specify the usage of an operation. The attributes
are used exactly in the same way as inthec element (se&.4.2.

Note that multiple descriptions of the same operation may occur in a document because there
may be several declarations @AP. Furthermore there may be severahSections for methods
of this operation (se&.4.4 which also use the same name. For reference purposes these must be
distinguished by differertabel attributes.

3.4.4 <Meth >

<!ELEMENT Meth EMPTY>

<!ATTLIST Meth Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

From gapdoc.dtd

This element is used withindenSection element to specify the usage of a method. The attributes
are used exactly in the same way as inthec element (se8.4.2.

GAPDoc 27

Frequently, an operation is implemented by several different methods. Therefore it seems to
be interesting to document them independently. This is possible by using the same method name
in different ManSections. It is however required that these subsections and those describing the
corresponding operation are distinguished by differemt1 attributes.

3.45 <Filt >

<!ELEMENT Filt EMPTY>

<!ATTLIST Filt Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #IMPLIED
Comm CDATA #IMPLIED
Type CDATA #IMPLIED>

From gapdoc.dtd

This element is used within BanSection element to specify the usage of a filter. The first four
attributes are used in the same way as inrthe: element (se8.4.2), except that thearg attribute is
optional.

The Type attribute can be any string, but it is thought to be something likecégory” or
“Representation”.

3.4.6 <Prop >
From gapdoc.dtd

<!ELEMENT Prop EMPTY>

<!ATTLIST Prop Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used withinienSection element to specify the usage of a property. The attributes
are used exactly in the same way as inthec element (se8.4.2.

3.4.7 <Attr >

<!ELEMENT Attr EMPTY>

<!ATTLIST Attr Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

From gapdoc.dtd

This element is used withindanSection element to specify the usage of an attributeGixP). The
attributes are used exactly in the same way as imthe element (se&.4.2.

3.4.8 <Var >

<!ELEMENT Var EMPTY>

<!ATTLIST Var Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

From gapdoc.dtd

GAPDoc 28

This element is used withindenSection element to document a global variable. The attributes are
used exactly in the same way as in theic element (se8.4.2 except that there is nrg attribute.

3.49 <Fan>
From gapdoc.dtd

<!ELEMENT Fam EMPTY>

<!ATTLIST Fam Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

This element is used within ManSection element to document a family. The attributes are used
exactly in the same way as in thenc element (se8.4.2 except that there is nirg attribute.

3.4.10 <InfoClass >

<!ELEMENT InfoClass EMPTY>

<!ATTLIST InfoClass Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

From gapdoc.dtd

This element is used withindanSection element to document an info class. The attributes are used
exactly in the same way as in thenc element (se8.4.2 except that there is nirg attribute.

3.5 Cross Referencing and Citations

Cross referencing in theAPDoc system is somewhat different to the usydEX cross referencing
in so far, that a reference knows “which type of object” it is referencing. For example a “reference to
a function” is distinguished from a “reference to a chapter”. The idea of this is, that the markup must
contain this information such that the converters can produce better output. The HTML converter can
for example typeset a function reference just as the name of the function with a link to the description
of the function, or a chapter reference as a number with a link in the other case.

Referencing is done with the=f element:

3.5.1 <Ref>
From gapdoc.dtd

<!ELEMENT Ref EMPTY>

<!ATTLIST Ref Func CDATA #IMPLIED
Oper CDATA #IMPLIED
Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED
Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED
Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED

GAPDoc 29

Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text | Number) #IMPLIED> <!-- normally automatic -->

The ref element is defined to beMpTY. If one of the attribute§unc, Oper, Meth, Prop, Attr,

Var, Fam, InfoClass, Chap, Sect, Subsect, Appendix iS given then there must be exactly one of
these, making the reference one to the corresponding objectLable attribute can be specified in
addition to make the reference unique, for example if more than one method with a given name is
present. (Note that there is no way to specify in the DTD that exactly one of the first listed attributes
must be given, this is an additional rule.)

A reference to a.abel element defined below (s&e5.2 is done by giving tha.abel attribute
and optionally therext attribute. If theText attribute is present its value is typeset in place of the
Ref element, if linking is possible (for example in HTML). If this is not possible, the section number
is typeset. This type of reference is also used for references to tables e

An external reference into another book can be specified by usirgpth@ame attribute. In this
case tha.abel attribute or, if this is not given, the function or section like attribute, is used to resolve
the reference. The generated reference points to the first hit when asking “?book name: label” inside
GAP.

The optional attributestyle can take only the valuesext and Number. It can be used with
references to sectioning units and it gives a hint to the converter programs, whether an explicit section
number is generated or text. Normally all references to sections generate numbers and references to
a GAP object generate the name of the corresponding object with some additional link or sectioning
information, which is the behavior gt yle="Text". In casestyle="Number" in all cases an explicit
section number is generated. So

Example
<Ref Subsect="Func" Style="Text"/> described in section
<Ref Subsect="Func" Style="Number"/>

produces: £Func>' described in sectio3.4.2

3.5.2 <lLabel >

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

From gapdoc.dtd

This element is used to define a label for referencing a certain position in the document, if this is
possible. If an exact reference is not possible (like in a printed version of the document) a reference
to the corresponding subsection is generated. The value ofitieattribute must be unique under

all Label elements.

3.5.3 <Cite >

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED
Where CDATA #IMPLIED>

From gapdoc.dtd

GAPDoc 30

This element is for bibliography citations. ItisPTY by definition. The attribut&ey is the key for
a lookup in a Bib[EX database that has to be specified in theliography element (sed.2.15.
The value of theihere attribute specifies the position in the document as in the correspordig L
syntax\cite[Where value] {Key value}

3.5.4 <lIndex >
From gapdoc.dtd
<!ELEMENT Index (%InnerText; |Subkey)*>

<!ATTLIST Index Key CDATA #IMPLIED
Subkey CDATA #IMPLIED>
<!ELEMENT Subkey (%InnerText;)*>

This element generates an index entry. The text within the element is typeset in the index entry, which
is sorted under the value, that is specified inthg andSubkey attributes. If they are not specified,
the typeset text itself is used as the key.

A subkey can be specified in the simpler version as an attribute, but then no further markup can
be used for the subkey. Optionally, the subkey text can be givesibleey element, in this case the
attribute value is used for sorting but the typeset text is taken from the contemtiofy.

Note that allFunc and similar elements automatically generate index entries. Ifthéndex
element 8.2.19 is not present in the document alldex elements are ignored.

3.5.5 <URL>
From gapdoc.dtd

<!ELEMENT URL (#PCDATA|Alt|Link|LinkText)*> <!-- Link, LinkText
variant for case where text needs further markup -->
<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats
that have links like HTML -->
<!ELEMENT Link ($InnerText;)*> <!-- the URL -—>
<!ELEMENT LinkText (%InnerText;)*> <!-- text for links, can contain markup -->

This element is for references into the internet. It specifies an URL and optionally a text which can
be used for a link (like in HTML or PDF versions of the document). This can be specified in two
ways: Either the URL is given as element content and the text is given in the optionahttribute

(in this case the text cannot contain further markup), or the element contains the two elements
andLinkText which in turn contain the URL and the text, respectively. The default value for the text
is the URL itself.

3.5.6 <Email >
From gapdoc.dtd

<!ELEMENT Email (#PCDATA|Alt|Link|LinkText)*>

This element type is the special case of an URL specifying an email address. The content of the
element should be the email address without any prefix hike ¥'to:”. This address is typeset by all
converters, also without any prefix. In the case of an output document format like HTML the converter
can produce a link with anfailto:” prefix.

GAPDoc 31

3.5.7 <Homepage>

From gapdoc.dtd
<!ELEMENT Homepage (#PCDATA|Alt|Link]|LinkText)*>

This element type is the special case of an URL specifying a WWW-homepage.

3.6 Structural Elements like Lists

The GAPDoc system offers some limited access to structural elements like lists, enumerations, and
tables. Although it is possible to use &lTiEX constructs one always has to think about other output
formats. The elements in this section are guaranteed to produce something reasonable in all output
formats.

3.6.1 <List >
From gapdoc.dtd

<!ELEMENT List (((Mark,Item) | (BigMark,Item) |Item)+)>
<!ATTLIST List Only CDATA #IMPLIED
Not CDATA #IMPLIED>

This element produces a list. Each item in the list corresponds trxamn element. Everyltem
element is optionally preceded byvark element. The content of this is used as a marker for the
item. Note that this marker can be a whole word or even a sentence. It will be typeset in some
emphasized fashion and most converters will provide some indentation for the rest of the item.
Theonly andNot attributes can be used to specify, that the list is included into the output by only
one type of converternqly) or all but one type of converter¢t). Of course at most one of the two
attributes may occur in one element. The following values are allowed as of ne@x”, “ HTML”,
and “Text”. See also thalt element in3.9.1for more about text alternatives for certain converters.

3.6.2 <Mark >

<!ELEMENT Mark (%$InnerText;)*>

From gapdoc.dtd

This element is used in the st element to mark items. S&e6.1for an explanation.

3.6.3 <ltem >
From gapdoc.dtd

<!ELEMENT Item (%Text;)*>

This element is used in the st, Enum, andTable elements to specify the items. See sectidiis],
3.6.4 and3.6.5for further information.

3.6.4 <Enum>

From gapdoc.dtd
<!ELEMENT Enum (Itemt)>

<!ATTLIST Enum Only CDATA #IMPLIED
Not CDATA #IMPLIED>

GAPDoc 32

This element is used identically to thest element (sed.6.1) except that the items may not have
marks attached to them. Instead, the items are numbered automatically. The same comments about
theonly andNot attributes as above apply.

3.6.5 <Table >
From gapdoc.dtd

<!ELEMENT Table (Caption?, (Row | HorLine)+)>
<!ATTLIST Table Label CDATA #IMPLIED
Only CDATA #IMPLIED
Not CDATA #IMPLIED
Align CDATA #REQUIRED>
<!-- We allow | and 1,c,r, nothing else -->
<!ELEMENT Row (Item+)>
<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption ($InnerText;)*>

A table in GAPDoc consists of an optionataption element followed by a sequence ®fw and
HorLine elements. AlorLine element produces a horizontal line in the table&kck element consists
of a sequence aoftem elements as they also occuriimst andEnum elements. Thénly andNot
attributes have the same functionality as described in.the element in3.6.1

Thealign attribute is written like 8AIEX tabular alignment specifier but only the lettets,™ r”,

“c”, and “|” are allowed meaning left alignment, right alignment, centered alignment, and a vertical
line as delimiter between columns respectively.

If the Label attribute is there, one can reference the table witiréifeelement (se8.5.7) using
its Label attribute.

Usually only simple tables should be used. If you want a complicated table #igiédutput you
should provide alternatives for text and HTML output. Note that in HTML-4.0 there is no possibility
to interpret the f” column separators arttbrLine elements as intended. There are lines between all
columns and rows or no lines at all.

3.7 Types of Text

This section covers the markup of text. Various types of “text” exist. The following elements are used
in the GAPDoc system to mark them. They mostly come in pairs, one long name which is easier to
remember and a shortcut to make the markup “lighter”.

Most of the following elements are thought to contain only character data and no further markup
elements. It is however necessary to allp elements to resolve the entities described in section
2.2.3

3.7.1 <Emph> and <E>

From gapdoc.dtd
<!ELEMENT Emph (%$InnerText;)*> <!-- Emphasize something -->
<!ELEMENT E ($InnerText;) *> <!-- the same as shortcut -->

This element is used to emphasize some piece of text. It may carmtairrText; (see3.2.3.

GAPDoc 33

3.7.2 <Quoted > and <Q>
From gapdoc.dtd

<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text -->
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->

This element is used to put some piece of text into
3.2.3.

-quotes. It may containerText; (see

3.7.3 <Keyword > and <K>
From gapdoc.dtd
<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword —->

<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->

This element is used to mark something asegword Usually this will be aGAP keyword such
as “if” or “for”. No further markup elements are allowed within this element except fonihe
element, which is necessary.

3.7.4 <Arg > and <A>
From gapdoc.dtd
<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->

<!ELEMENT A (#PCDATA|ALlt)*> <!-- Arqgument (shortcut) -->

This element is used insidescriptions in ManSections to mark something as argument(of
a function, operation, or such). It is guaranteed that the converters typeset those exactly as in the
definition of functions. No further markup elements are allowed within this element.

3.7.5 <Code> and <C>
From gapdoc.dtd

<!ELEMENT Code (#PCDATA|Alt)*> <!-— GAP code ——>
<!ELEMENT C (#PCDATA|Alt)*> <!-— GAP code (shortcut) —-—>

This element is used to mark something as a pieadtlike for example sGAP expression. It is
guaranteed that the converters typeset this exactly as imi#ie ng element (compare secti@?7.9
No further markup elements are allowed within this element.

3.7.6 <File >and<F>
From gapdoc.dtd

<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->
<!ELEMENT F (#PCDATA|ALlt)*> <!-- Filename (shortcut) --—>

This element is used to mark something &femameor apathnamen the file system. No further
markup elements are allowed within this element.

GAPDoc 34

3.7.7 <Button > and
From gapdoc.dtd

<!ELEMENT Button (#PCDATA|Alt)*> <!-- "Button" (also Menu, Key, ...) —-—>
<!ELEMENT B (#PCDATA|Alt) *> <!-- "Button" (shortcut) -->

This element is used to mark something dsitton It can also be used for other items in a graphical
user interface likenenusmenu entriesor keys No further markup elements are allowed within this
element.

3.7.8 <Package >
From gapdoc.dtd
<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->

This element is used to mark something as a namepatkage This is for example used to define the
entitiesGAP, XGAP or GAPDoc (see sectiorz.2.3. No further markup elements are allowed within
this element.

3.7.9 <Listing >

From gapdoc.dtd
<!ELEMENT Listing (#PCDATA)> <!-- This is just for GAP code listings -->
<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of
listed code, may appear in
output -—>

This element is used to embed listings of programs into the document. Only character data and no
other elements are allowed in the content. You shawdtuse the character entities described in
section2.2.3but instead type the characters directly. Only the general XML rules from seztion
apply. Note especially the usage af [CDATA[sections described there. It is guaranteed that all
converters use a fixed width font for typesettingst ing elements. Compare also the usage of the
Code andc elements irB.7.5

TheType attribute contains a comment about the type of listed code. It may appear in the output.

3.7.10 <Log> and <Example >

From gapdoc.dtd
<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic

example checking mechanism -->
<!ELEMENT Log (#PCDATA)> <!-- This not -->

These two elements behave exactly like theting element (se8.7.9. They are thought for pro-
tocols of GAP sessions. The only difference between the two is thatple sections are intended
to be subject to an automatic manual checking mechanism used to ensure the correctnesampf the
manual whereasog is not touched by this.

3.7.11 <Verb>

There is one further type of verbatim-like element.
From gapdoc.dtd

<!ELEMENT Verb (#PCDATA)>

GAPDoc 35

The content of such an element is guaranteed to be put into an output version exactly as it is using
some fixed width font. Before the content a new line is started. If the line after the end of the start tag
consists of whitespace only then this part of the content is skipped.

This element is intended to be used together withathreelement to specify pre-formatted ASCII
alternatives for complicatemt splay formulae orTables.

3.8 Elements for Mathematical Formulae

3.8.1 <Math > and <Display >
From gapdoc.dtd

<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>
<!-- TeX displayed math mode formula —-->

<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>

These elements are used for mathematical formulae. As described in se2tihey correspond to
IATEX’s math and display math mode respectively.

The formulae are typed in as iATEX, exceptthat the standard XML entities, s@el.9(in par-
ticular the characters and &), must be escaped - either by using the corresponding entities or by
enclosing the formula betweer: [CDATA[” and “]] >". (The main reference foATEX is [Lam89.)

The only element type that is allowed within the formula elements is\tlyeor A element (see
3.7.4, which is used to typeset identifiers that are argumen@A® functions or operations.

In text and HTML output these formulae are shown/dgX source code. For simple formulae
(and you should try to make all your formulae simple!) there is the elemésge3.8.2 for which
there is a well defined translation into text, which can be used for text and HTML output versions
of the document. So, if possible try to avoid theth andbisplay elements or provide useful text
substitutes for complicated formulae wat elements (se8.9.1and3.7.1J).

3.8.2 <M>
From gapdoc.dtd

<!-- Math with well defined translation to text output --—>
<!ELEMENT M (#PCDATA|A|Arg|Alt)*>

The “M” element type is intended for formulae in the running text for which there is a sensible ASCI|I
version. For theAIEX version of aGAPDoc document thel andMath elements are equivalent. The
remarks in3.8.1about special characters and the; element apply here as well. A document which
has all formulae enclosed inelements can be well readable in text terminal output and printed output
versions.

The following BTEX macros have a sensible ASCII translation and are guaranteed to be translated
accordingly by text (and HTML) converters:

In all other macros only the backslash is removed. Whitespace is normalized (to one blank) but
not removed. Note that whitespace is not added, so you may want to add a few more spaces than you
usually do in yourATEX documents.

Braces{} are removed in general, however pairs of double braces are converted to one pair of

GAPDoc
\ast *
\cdot *
\colon
\equiv =
\geq >=
\hookrightarrow | ->
\iff <=>
\langle <
\ldots
\left
\leq <=
\leftarrow <-
\Leftarrow <=
\limits
\longrightarrow | -->
\Longrightarrow| ==>
\mapsto ->
\mathbb
\mathop
\mid |
\pmod mod
\rangle >
\right
\rightarrow ->
\Rightarrow =>
\setminus \
\times X
\to ->

Table: IATEX macros with special text translation

36

braces. This can be used to writ&>x" {12} </M> for x~ 12 and<M>x_{ {i+1}}</M>forx_{i+1}.

3.9 Everything else

3.9.1 <Alt >

This element is used to specify alternatives for different output formats within normal text. See also

sections3.6.], 3.6.4 and3.6.5for alternatives in lists and tables.
From gapdoc.dtd

<!ELEMENT Alt

($InnerText;) *>

<!-- This is only to allow "Only" and
"Not" attributes for normal text -->
<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED>

GAPDoc 37

Of course exactly one of the two attributes must occur in one element. The attribute values must be one
word or a list of words, separated by spaces or commas. The words which are currently recognized by
the converter programs contained3APDoc are: “LaTex”, “ HTML", and “Text”. If the only attribute
is specified then only the corresponding converter will include the content of the element into the
output document. If th&ot attribute is specified the corresponding converter will ignore the content
of the element. You can use other words to specify special alternatives for other conve®&pPdokt
documents.

We fix a rule for handling the content of ant element withon1ly attribute. In their content code
for the corresponding output format is included directly. So, in case of HTML the content is HTML
code, in case ofIpX the content isATEX code. The converters don't apply any handling of special
characters to this content.

Within the element onlyInnerText; (see3.2.3 is allowed. This is to ensure that the same set
of chapters, sections, and subsections show up in all output formats.

3.9.2 <Par > and <P>
From gapdoc.dtd

<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -->
<!ELEMENT P EMPTY> <!-- the same as shortcut -->

ThisEMPTY element marks the boundary of paragraphs. Note that an empty line in the input does not
mark a new paragraph as opposed to #figd.convention.

(Remark: it would be much easier to parse a document and to understand its sectioning and
paragraph structure when there was an element wbostentis the text of a paragraph. But in
practice many paragraph boundaries are implicitly clear which would make it somewhat painful to
enclose each paragraph in extra tags. The introduction af tireear elements as above delegates
this pain to the writer of a conversion program aPDoc documents.)

3.9.3

From gapdoc.dtd

<!ELEMENT Br EMPTY> <!-- a forced line break -->

This element can be used to force a line break in the output versiongArRoc element, it does not
start a new paragraph. Please, do not use this insteadanf @lement, this would often lead to ugly
output versions of your document.

3.9.4 <lIgnore >

From gapdoc.dtd

<!ELEMENT Ignore (%Text;| Chapter | Section | Subsection | ManSection |
Heading) *>

<!ATTLIST Ignore Remark CDATA #IMPLIED>

This element can appear anywhere. Its content is ignored by the standard converters. It can be used,
for example, to include data which are not part of the acBs?Doc document, like source code, or
to make not finished parts of the document invisible.

Of course, one can use special converter programs which extract the contents:af elements.
Information on the type of the content can be stored in the optional attrilute k.

Chapter 4

Distributing a Document into Several
Files

In GAPDoc there are facilities to distribute a single document over several files. This is for example
interesting, if one wants to store the documentation of some code in the same file as the code itself.
Or, if one just wants to store chapters of a document in separate files. There is a set of conventions
how this is done and some tools to collect the text for further processing.

The technique can also be used to distribute and collect other types of documents into respectively
from several files (e.g., source code, examples).

4.1 The Conventions

In this description we use the stritgPDoc for marking pieces of a document to collect.
Pieces of documentation that shall be incorporated into another document are marked as follows:
Example

<#GAPDoc Label="MyPiece">

<E>This</E> 1is the piece.

The hash characters are removed.
<#/GAPDoc>

This piece is then included into another file by a statement lkéInclude Label="MyPiece">
Here are the exact rules, how pieces are gathered:

e All lines up to a line containing the character sequenc@GabPDoc Label="" (exactly one
space character) are ignored. The characters on the same line before this sequence are stored as
“prefix”. The characters after the sequence up to the next double quotes character are stored as
“label”. All other characters in the line are ignored.

e The following lines up to a line containing the character sequerge 6APDoc>" are stored
under the label. These lines are processed as follows: The longest possible substring from the
beginning of the line that equals the corresponding substring of the prefix is removed.

Having stored a list of labels and pieces of text gathered as above this can be used as follows.

e In GAPDoc documentation files all statements of the form#include Label="Key">" are
replaced by the sequence of lines stored under the kabkel

38

GAPDoc 39

e Additionally, every occurrence of a statement of the formc#fnclude SYSTEM
"Filename">"is replaced by the whole file stored under the namesnane in the file system.

e These substitutions are done recursively (although one should probably avoid to use this exten-
sively).

Here is another example:

Example
<#GAPDoc Label="AnotherPiece"> some characters
This text is not indented.

This text is indented by one blank.

#Not indented.

#<#/GAPDoc>

replaces<#Include Label="AnotherPiece"> by
Example

This text is not indented.
This text is indented by one blank.
Not indented.

Since these rules are very simple it is quite easy to write a program in almost any programming
language which does this gathering of text pieces and the substitutioBsPiDoc there is theGAP
functionComposedDocument (4.2.1) which does this.

Note that the XML-tag-like markup we have used here is not a legal XML markup, since the hash
character is not allowed in element names. The mechanism described here is a preprocessing step
which composes a document.

4.2 A Tool for Collecting a Document

4.2.1 ComposedDocument

{ ComposedDocument (tagname, path, main, source[, info]) (function)

{ ComposedXMLString (path, main, source[, info]) (function)
Returns: a document as string, or a list with this string and information about the source positions
The argumentagname is the string used for the pseudo elements which mark the pieces of a doc-

ument to collect. (IMt.1we usedsAPDoc astagname . The second functionomposedXMLString (

) is an abbreviation fotomposedDocument ("GAPDoc", ...).
The argumenpath must be a path to some directory (as string or directory objew)n the

name of a file in this directory angburce a list of file names, all of these relative path . The

document is constructed via the mechanism described in Sektfion
First the files given irsource are scanned for chunks of the document markee bagname

Label="..."> and </#tagname > pairs. Then the filenain is read and alk#Include ...

>-tags are substituted recursively by other files or chunks of documentation found in the first step,

respectively. If the optional argumeitfo is given and set tarue this function returns a list

[str, origin], wherestr is a string containing the composed document anihin is a sorted

list of entries of the formpos, filename, line]. Herepos runs through all character positions of

starting lines or text pieces from different filessair. Thefilename andline describe the origin of

this part of the collected document. Without the fourth argument only the sitings returned.

GAPDoc 40

Example
gap> doc := ComposedDocument ("GAPDoc", "/my/dir", "manual.xml",
> ["../lib/func.gd", "../lib/func.gi"], true);;

4.2.2 OriginalPositionDocument

¢ OriginalPositionDocument (srcinfo, pos) (function)
Returns: A pair [filename, linenumber].
Heresrcinfo must be a data structure as returned as second entryippsedDocument
(4.2.]) called withinfo =true. It returns for a given positiopos in the composed document the
file name and line number from which that text was collected.

Chapter 5

The Converters and an XML Parser

The GAPDoc package contains a set of programs which allow us to converiRDoc book into
several output versions and to make them availab@A®’s online help.

Currently the following output formats are provided: text for browsing inside a terminal running
GAP, IATEX with hyperref-package for cross references via hyperlinks and HTML for reading with
a Web-browser.

5.1 Producing Documentation from Source Files

Here we explain how to use the functions which are described in more detail in the following sec-
tions. We assume that we have the main fil@ook.xml of a book "MyBook" in the directory
/my/book/path. This contains<#Include ...>-statements as explained in Chaptelhese refer
to some other files as well as pieces of text which are found in the comments ofzaghsmurce files
../lib/a.gdand../1ib/b.gi (relative to the path above). A BipX databaselyBook .bib for the
citations is also in the directory given above. We want to produce a text-, and HTML-version
of the document. (AALEX version of the manual is produced, so it is also easy to comapile, and
postscript-versions.)

All the commands shown in this Section are collected in the single funeti@aGAPDocDoc
(5.1.0.

First we construct the complete XML-document as a string @ithposedDocument (4.2.1). This

interprets recursively the#Include ...>-statements.
Example
gap> path := Directory ("/my/book/path");;
gap> main := "MyBook.xml";;

gap> files := ["../lib/a.qgd", "../lib/b.gi"];;

gap> bookname := "MyBook";;

gap> doc := ComposedDocument ("GAPDoc", path, main, files, true);;

Now doc is a list with two entries, the first is a string containing the XML-document, the second gives
information from which files and locations which part of the document was collected. This is useful
in the next step, if there are any errors in the document.

Next we parse the document and store its structure in a tree-like data structure. The commands
for this areParseTreexMLString (5.2.1) andCheckAndCleanGapDocTree (5.2.8.

41

GAPDoc 42

Example
gap> r := ParseTreeXMLString(doc[1l], doc[2]);;
gap> CheckAndCleanGapDocTree (1) ;

true

We start to produce a text version of the manual, which can be read in a terminal (window). The com-
mand isGAPDoc2Text (5.3.9. This produces a record with the actual text and some additional infor-
mation. The text can be written chapter-wise into files weitRDoc2TextPrintTextFiles (5.3.3.

The names of these files atkap0.txt, chapl.txt and so on. The text contains some markup using
ANSI escape sequences. This markup is substituted b@afehelp system (user configurable) to
show the text with colors and other attributes. For the bibliography we have teatelbc2Text

(5.3.9 the location of the Bib@X database by specifyingmth as second argument.

Example

gap> t := GAPDoc2Text (r, path);;
gap> GAPDoc2TextPrintTextFiles(t, path);

This command constructs all parts of the document including table of contents, bibliography and
index. The functiongormatParagraph (6.1.3 for formatting text paragraphs amdrseBibFiles
(7.1.7) for reading BibEX files with GAP may be of independent interest.

With the text version we have also produced the information which is used for searching with
GAP’s online help. Also, labels are produced which can be used by links in the HTMLpé&fd
versions of the manual.

Next we produce aAIeX version of the documentGAPDoc2LaTeX (5.3.]) returns a string con-
taining the ATEX source. The utility functiorrileString (6.3.5 writes the content of a string to a

file, we chooselyBook . tex.
Example

gap> 1 := GAPDoc2LaTeX(r);;
gap> FileString(Filename (path, Concatenation(bookname, ".tex")), 1);

Assuming that you have a sufficiently good installation gk Bvailable (se&APDoc2LaTeX (5.3.7)

for details) this can be processed with a series of commands like in the following example.
Example

cd /my/book/path
pdflatex MyBook

bibtex MyBook

pdflatex MyBook
makeindex MyBook
pdflatex MyBook

mv MyBook.pdf manual.pdf

After this we have adf-version of the document in the filanual.pdf. It contains hyperlink in-
formation which can be used with appropriate browsers for convenient reading of the document on
screen (e.gxpdf is nice because it allows remote calls to display named locations of the document).
Of course, we could also use other commands like=x or dvips to process theAIEX source file.
Furthermore we have produced a fileBook . pnr which isGAP-readable and contains the page num-
ber information for each (sub-)section of the document.

We can add this page number information to the indexing information collected by the text con-
verter and then print aanual.six file which is read byGAP when the manual is loaded. This is
done withaddPageNumbersToSix (5.3.49 andPrintSixFile (5.3.5.

GAPDoc 43

Example
gap> AddPageNumbersToSix (r, Filename (path, "MyBook.pnr"));
gap> PrintSixFile (Filename (path, "manual.six"), r, bookname);

Finally we produce an HTML-version of the document and write it (chapter-wise) into files
chap0.html, chapl.html and so on. They can be read with any Web-browser. The com-
mands areGAPDoc2HTML (5.3.7) and GAPDoc2HTMLPrintHTMLFiles (5.3.§. We also add a
link from manual.html tO0 chapO.html. You probably want to add a fil@manual.css, see
GAPDoc2HTMLPrintHTMLFiles (5.3.8 for more details. The argumepdth of GAPDoc2HTML (5.3.7)

specifies the directory containing the BgXTdatabase files.
Example

gap> h := GAPDoc2HIML (r, path);;
gap> GAPDoc2HTMLPrintHIMLFiles (h, path);

5.1.1 MakeGAPDocDoc

{ MakeGAPDocDoc (path, main, files, bookname[, gaproot]) (function)

This function collects all the commands for producing a texi£- and HTML-version of &GAP-

Doc document as described in Sectibrl. It checks the.1og file from the call ofpdflatex and
reports if there are errors, warnings or overfull boxes.

Note: If this function works for you depends on your operating system and installed software. It
will probably work on mostn1x systems with a standaréTEX installation. If the function doesn't
work for you look at the source code and adjust it to your system.

Herepath must be the directory (as string or directory object) containing the maimfia of
the document (given with or without them1 extension. The argumefites s a list of (probably
source code) files relative fiath which contain pieces of documentation which must be included in
the document, see Chapter And bookname is the name of the book used ®AP’s online help.
The optional argumergaproot must be a string which gives the relative path frpath to the
main GAP root directory. If this is given, the HTML files are produced with relative paths to external
books.

ExperimentalMakeGAPDocDoc can be called with additional argumeritgh" and/or"MathML".

If these are given additional variants of the HTML conversion are called;zse@@c2HTML (5.3.7) for
details.

5.2 Parsing XML Documents

Arbitrary well-formed XML documents can be parsed and browsed by the following functions.

5.2.1 ParseTreeXMLString

{Q ParseTreeXMLString (Str[, srcinfo][, entitydict]) (function)
Q ParseTreeXMLFile (fname[, entitydict]) (function)
Returns: arecord which is root of a tree structure
The first function parses an XML-document stored in stiétiy and returns the document in
form of a tree.

GAPDoc 44

The optional argumersrcinfo must have the same format asini ginalPositionDocument
(4.2.2. If itis given then error messages refer to the original source of the text with the problem.

With the optional argumengntitydict named entities can be given to the parser, for ex-
ample entities which are defined in thatd-file (which is not read by this parser). The standard
XML-entities do not need to be provided, and ®APDoc documents the entity definitions from
gapdoc.dtd are automatically provided. Entities in the document®0CTYPE declaration are parsed
and also need not to be provided here. The arguewitydict must be a record where each com-
ponent name is an entity name (without the surrounding & and ;) to which is assigned its substitution
string.

The second function is just a shortcut farrseTreexMLString (StringFile (fname),
), seestringFile (6.3.9.

After these functions return the list of named entities which were known during the parsing can
be found in the recor@NTITYDICT.

A node in the result tree corresponds to an XML element, or to some parsed character data. In the
first case it looks as follows:

Example Node

rec(name := "Book",
attributes := rec(Name := "EDIM"),
content := [... list of nodes for content ...],
start := 312,
stop := 15610,
next := 15611)
This means thatstr {[312..15610]} looks like <Book Name="EDIM"> ... content ...
</Book>.

The leaves of the tree encode parsed character data as in the following example:
Example Node

rec(name := "PCDATA",
content := "text without markup ")

This function checks whether the XML documentisll formed see2.1.14for an explanation. If an
error in the XML structure is found, a break loop is entered and the text around the position where the
problem starts is shown. Witthow () ; one can browse the original input in theger (Reference:
Pagen, starting with the line where the error occurred. All entities are resolved when they are either
entities defined in th&APDoc package (in particular the standard XML entities) or if their definition
is included in the<!DOCTYPE ..> tag of the document.

Note thatParseTreexMLString does not parse and interpret the corresponding document type
definition (the.dtd-file given in the< !DOCTYPE ..> tag). Hence it also does not check tradidity
of the document (i.e., it is n@alidating XML parsey.

If you are using this function to parse &aAPDoc document you can use
CheckAndCleanGapDocTree (5.2.8§ for some validation and additional checking of the docu-
ment structure.

5.2.2 StringXMLElement

Q StringXMLElement (tree) (function)
Returns: alist [string, positions]
The argumentree must have a format of a node in the parse tree of an XML document as
returned byParseTreexMLString (5.2.7) (including the root node representing the full document).

GAPDoc 45

This function computes a pairstring, positions] wherestring contains XML code which is
equivalent to the code which was parsed totgge# . Andpositions is a list of lists of four numbers
[eltb, elte, contb, conte]. There is one such list for each XML element occuringimring,
whereeltb andelte are the begin and end position of this elementtining and where-ontb and
conte are begin and end position of the content of this element, or bothi&there is no content.

Note that parsing XML code is an irreversible task, we can only expect to get equivalent XML
code from this function. But parsing the resultisgring again and applyingtringXMLE]lement
again gives the same result. See the functioni t ySubstitution (5.2.3 for back-substitutions of
entities in the result.

5.2.3 EntitySubstitution

¢ EntitySubstitution (xmlstring, entities) (function)

Returns: a string

The argumentxmistring must be a string containing XML code or a pdistring,
positions] as returned bygtringXMLElement (5.2.2. The argumenentities specifies entity
names (without the surroundidgand;) and their substitution strings, either a list of pairs of strings
or as a record with the names as components and the substitutions as values.

This function tries to substitute non-intersecting partsiofing by the given entities. If the
positions information is given then only parts of the document which allow a valid substitution by
an entity are considered. Otherwise a simple text substitution without further check is done.

Note that in general the entity resolution in XML documents is a complicated and non-reversible
task. But nevertheless this utility may be useful in not too complicated situations.

5.2.4 DisplayXMLStructure
Q DisplayXMLStructure (tree) (function)
This utility displays the tree structure of an XML document as it is returned by

ParseTreeXMLString (5.2.1) (without thePCDATA leaves).
Since this is usually quite long the result is shown usingpther (Reference: Pagey.

5.2.5 ApplyToNodesParseTree

O ApplyToNodesParseTree (tree, fun) (function)
{) AddRootParseTree (tree) (function)
{) RemoveRootParseTree (tree) (function)

The functionApplyToNodesParseTree applies a functiorfun to all nodes of the parse tree
tree of an XML document returned bBarseTreeXMLString (5.2.]).

The functionaddrootParseTree IS an application of this. It adds to all nodes a component
.root to which the top node treigee is assigned. These components can be removed afterwards
with RemoveRootParseTree.

Here are two more utilities which ug@plyToNodesParseTree (5.2.5.

GAPDoc 46

5.2.6 GetTextXMLTree

{Q GetTextXMLTree (tree) (function)
Returns: a string
The argumenttree must be a node of a parse tree of some XML document, see
ParseTreexMLFile (5.2.7). This function collects the content of this and all included elements re-
cursively into a string.

5.2.7 XMLElements

{ XMLElements (tree, eltnames) (function)
Returns: a list of nodes
The argumenttree must be a node of a parse tree of some XML document, see
ParseTreexMLFile (5.2.1). This function returns a list of all subnodestoée (possibly includ-
ing tree) of elements with name given in the list of stringlthames . Use"PCDATA" as name for
leave nodes which contain the actual text of the document. As an abbreweitiames can also
be a string which is then put in a one element list.
And here are utilities for processir@APDoc XML documents.

5.2.8 CheckAndCleanGapDocTree

{ CheckAndCleanGapDocTree (free) (function)

Returns: nothing

The argumentree of this function is a parse tree fromarseTreexMLString (5.2.1) of some
GAPDoc document. This function does an (incomplete) validity check of the document according to
the document type declarationdapdoc.dtd. It also does some additional checks which cannot be
described in the DTD (like checking whether chapters and sections have a heading). For elements
with element content the whitespace between these elements is removed.

In case of an error the break loop is entered and the position of the error in the original XML
document is printed. Witlshow () ; one can browse the original input in tkager (Reference:
Pagel).

5.2.9 AddParagraphNumbersGapDocTree

{ AddParagraphNumbersGapDocTree (free) (function)
Returns: nothing
The argumentree must be an XML tree returned arseTreeXMLString (5.2.1) applied to a
GAPDoc document. This function adds to each node of the tree a compotentt which is of form
[Chapter[, Section[, Subsection, Paragraph]]]. Here the first three numbers should be
the same as produced by thegX version of the document. Text before the first chapter is counted
as chaptep and similarly for sections and subsections. Some elements are always considered to start
a new paragraph.

5.2.10 InfoXMLParser

O InfoXMLParser (info class)

GAPDoc 47

The default level of this info class is 1. Functions likerseTreeXMLString (5.2.1) are then
printing some information, in particular in case of errors. You can suppress it by setting the level of
InfoxMLParser to 0. With level 2 there may be some more information for debugging purposes.

5.3 The Converters

Here are more details about the conversion programGA&Doc XML documents.

5.3.1 GAPDocZLaTeX

{ GAPDoc2LaTeX (tree) (function)

Returns: IATEX document as string

The argumentree for this function is a tree describing@PDoc XML document as returned
by ParseTreexMLString (5.2.1) (probably also checked wittheckAndCleanGapDocTree (5.2.8).

The output is a string containing a version of the document which can be written to a file and processed
with IATEX or pdfIATEX (and probably BibfX andmakeindex).

The output uses theeport document class and needs the followiAfEK packages:adwide,
amssymb, isolatinl, makeidx, color, fancyvrb, pslatex andhyperref. These are for example
provided by theeTeX-1.0 distribution of EX (which in turn is used for mostg packages of current
Linux distributions); se@ttp://www.tug.org/tetex/.

In particular, the resultingdf-output (andivi-output) contains (internal and external) hyperlinks
which can be very useful for online browsing of the document.

The BTEX processing also produces a file with extensipnr which isGAP readable and contains
the page numbers for all (sub)sections of the document. This can be usPtsyonline help; see
AddPageNumbersToSix (5.3.4. There is support for two types or XML processing instructions which
allow to change the options used for the document class or to add some extra lines to the preamble of
the BTEX document. They can be specified as in the following examples:
in top level of XML document

<?LaTeX Options="12pt"?>

<?LaTeX ExtraPreamble="\usepackage{blabla}
\newcommand{\bla}{blabla}

"?>

Non-ASCII characters in theAPDoc document are translated fJX input in ASCII-encoding with
the help oftncode (6.2.2 and the option'LaTex". See the documentation bficode (6.2.2 for how
to proceed if you have a character which is not handled (yet).

A hint for large documents: In manyeX installations one can easily reach some memory lim-
itations with documents which contain many (cross-)referenceseTeX you can look for a file
texmf . cnf which allows to enlarge certain memory sizes.

This function works by running recursively through the document tree and calling a han-
dler function for eachGAPDoc XML element. Many of these handler functions (usually in
GAPDoc2LaTeXProcs.<ElementName>) are not difficult to understand (the greatest complications
are some commands for index entries, labels or the output of page number information). So it should
be easy to adjust layout details to your own taste by slight modifications of the program.

A few settings can be adjusted by a functi®#tGapDocLaTeXOptions. It takes one or several
strings as arguments. If the arguments contain one of the strngs, "dvi" or "ps" then BTpXs
hyperref package is configured for optimized output of the given format (defaulpéig"). If

http://www.tug.org/tetex/

GAPDoc 48

"color™ Or "nocolor" is in the argument list then colors are used or not used, respectively. The
default is to use colors buthocolor™ can be useful for a printable version of a manual (but who
wants to print such manuals?).

5.3.2 GAPDoc2Text

{Q GAPDoc2Text (tree[, bibpath][, width]) (function)

Returns: record containing text files as strings and other information

The argumentree for this function is a tree describing@PDoc XML document as returned
by ParseTreexMLString (5.2.1) (probably also checked wittheckAndCleanGapDocTree (5.2.8).
This function produces a text version of the document which can be usedswils online help
(with the "screen" viewer, seeSetHelpvViewer (Reference: SetHelpViewe)). It includes title
page, bibliography and index. The bibliography is made from BibXMLext or Btbdatabases, see
7. Their location must be given with the arguméitipath (as string or directory object).

The output is a record with one component for each chapter (with names1", ..., "Bib" and
"Ind"). Each such component is again a record with the following components:

text the text of the whole chapter as a string

ssnr list of subsection numbers in this chapter (like, 2, 1] for chapter 3, section 2, subsec-
tion 1)

linenr corresponding list of line numbers where the subsections start

len number of lines of this chapter

The result can be written into files with the commaa@Doc2TextPrintTextFiles (5.3.3.

As a side effect this function also producestheual . six information which is used for search-
ing in GAP’s online help. This is stored itiee .six and can be printed intorganual . six file with
PrintSixFile (5.3.95 (preferably after producing &TgX version of the document as well and adding
the page number information teee .six, seeGAPDoc2LaTeX (5.3.1) andAddPageNumbersToSix
(5.3.9).

The text produced by this function contains some markup via ANSI escape sequences. The se-
guences used here are usually ignored by terminals. B@Alrehelp system will substitute them by
interpreted color and attribute sequences (egeAttr (6.1.2) before displaying them. There is a de-
fault markup used for this but it can also be configured by the useseg@@aPDocText Theme (5.3.6.
Furthermore, the text produced is in UTF-8 encoding. The encoding is also translated on the fly, if
GAPInfo.TermEncoding is set to some encoding supportediitode (6.2.2), e.9.,"I1S0-8859-1"
or "latinl".

With the optional argumemwidth a different length of the output text lines can be chosen. The
default is 76 and all lines in the resulting text start with two spaces. This looks good on a terminal
with a standard width of 80 characters and you probably don’t want to use this argument.

5.3.3 GAPDoc2TextPrintTextFiles

{ GAPDoc2TextPrintTextFiles ([, path]) (function)
Returns: nothing
The first argument must be a result returnedsbyboc2Text (5.3.9. The second argument is
a path for the files to write, it can be given as string or directory object. The text of each chapter is
written into a separate file with nam&ap0. txt, chapl.txt, ...,chapBib.txt, andchapInd.txt.

GAPDoc 49

If you want to make your document accessible via®#é¢ online help you must put at least these
files for the text version into a directory, together with therfidl@ual . six, seePrintSixFile (5.3.5.
Then specify the path to thenual.six file in the packageBackageInfo.q file, see Extending:
The Packagelnfo.g Filg.

Optionally you can add thevi- andpdf-versions of the document which are produced with
GAPDoc2LaTeX (5.3.]) to this directory. The files must have the namesual .dvi andmanual . pdf,
respectively. Also you can add the files of the HTML version produced @#itthoc2HTML (5.3.7) to
this directory, se@APDoc2HTMLPrintHTMLFiles (5.3.8. The handler functions iBAP for this help
format detect automatically which of the optional formats of a book are actually available.

5.3.4 AddPageNumbersToSix

¢ AddPageNumbersToSix (tree, pnrfile) (function)
Returns: nothing
Heretree must be the XML tree of &APDoc document, returned byarseTreeXMLString
(5.2.9). Runninglatex on the result olGAPDoc2LaTeX (5.3.]) (tree) produces a filgnrfile
(with extension.pnr). The commandaprDoc2Text (5.3.2 (tree) creates a componetiee .six
which contains all information about the document for @#P online help, except the page numbers
in the .dvi, .ps, .pdf versions of the document. This command adds the missing page number
information totree .six.

5.3.5 PrintSixFile

O PrintSixFile (tree, bookname, fname) (function)
Returns: nothing
This function prints the.six file fname for a GAPDoc document stored irtree with
namebookname. Such a file contains all information about the book which is needed by the
GAP online help. This information must first be created by callscafpoc2Text (5.3.2 and
AddPageNumbersToSix (5.3.9.

5.3.6 SetGAPDocTextTheme

{ SetGAPDocTextTheme ([Optrec]) (function)

Returns: nothing

With this function can readers of the screen versio®AaP manuals which are generated by the
GAPDoc package configure the color and attribute layout of the displayed text. There is a default
which can be reset by calling this function without argument.

As an abbreviation the argumenptrec can be a string for the known name of a theme. Cur-
rently, there is only'none" which displays just the plain text without any markup.

Otherwise,optrec must be a record. Its entries overwrite the corresponding entries in the de-
fault. To construct valid markup you can usextattr (6.1.9. The following components are rec-
ognized:

reset resetto default, don't change this
Heading chapter and (sub-)section headings

Func function, operation, ... names

GAPDoc 50

Arg argument names in descriptions
Example example code

Package package names

Returns Returns-line in descriptions

URL URLs

Mark Marks in description lists

K GAP keywords

C code or text to type

F file names

B buttons

Emph emphasized text

Ref reference text

BibReset reset for bibliography, don’'t change
BibAuthor author names in bibliography
BibTitle titles in bibliography

BibJournal journal names in bibliography
BibVolume volume number in bibliography

BibLabel labels for bibliography entries

Example
gap> # change display of headings to bold green

gap> SetGAPDocTextTheme (rec (

> Heading:=Concatenation (TextAttr.bold, TextAttr.2)));

5.3.7 GAPDocZ2HTML

{ GAPDoc2HTML (tree[, bibpath[, gaproot]][, mtrans]) (function)

Returns: record containing HTML files as strings and other information

The argumentree for this function is a tree describing@PDoc XML document as returned
by ParseTreexMLString (5.2.1) (probably also checked wittheckAndCleanGapDocTree (5.2.8).
Without anmtrans argument this function produces an HTML version of the document which
can be read with any Web-browser and also be used @#th’s online help (se&etHelpViewer
(Reference: SetHelpViewe)). It includes title page, bibliography, and index. The bibliography is
made from BibEX databases. Their location must be given with the arguriepiath (as string or
directory object, if not given the current directory is used). If the third argurgeptoot is given
and is a string then this string is interpreted as relative pa@A@'s main root directory. Reference-
URLSs to external HTML-books which begin with tl@AP root path are then rewritten to start with

GAPDoc 51

the given relative path. This makes the HTML-documentation portable provided a package is installed
in some standard location below tGB&P root.

The output is a record with one component for each chapter (with naimesg1", ...,"Bib", and
"Ind"). Each such component is again a record with the following components:

text the text of an HTML file containing the whole chapter (as a string)

ssnrlist of subsection numbers in this chapter (like, 2, 1] for chapter 3, section 2, subsec-
tion 1)

Standard output format withoumtrans argument

The HTML code produced with this converter conforms to the W3C specification “XHTML 1.0
strict”, seehttp://www.w3.0rg/TR/xhtmll. First, this means that the HTML files are valid XML
files. Secondly, the extension “strict” says in particular that the code doesn't contain any explicit font
or color information.

Mathematical formulae are handled as in the text converteboc2Text (5.3.2. We don't want
to assume that the browser can use symbol fonts. Seareusers like to browse the online help
with 1ynx, seesetHelpViewer (Reference: SetHelpViewey, which runs inside the same terminal
windows asGAP.

Using a stylesheet file

The layout information for a browser should be specified in a cascading style sheet (CSS)
file. The GAPDoc package contains an example of such a style sheet, see thadilec.css
in the root directory of the package. This file conforms to the W3C specification CSS 2.0, see
http://www.w3.0rg/TR/REC-CSS2. You may just copy that file asanual.css into the directory
which contains the HTML version of your documentation. But, of course, you are free to adjust it
for your package, e.g., change colors or other layout details, add a background image, ... Each of the
HTML files produced by the converters contains a link to this local style sheet file ealhed1 . css.

Output format withmtrans argument

Currently, there are two experimental variants of this converter available which handle mathemat-
ical formulae differently. They are accessed via the optionahisins argument.

If this argument is set tdTth" itis assumed that you have installed thgK to HTML translation
programtth. This is used to translate the contents ofith#ath andbisplay elements into HTML
code. Note that the resulting code is not compliant with any standard. Formally it is “XHTML 1.0
Transitional”, it contains explicit font specifications and the characters of mathematical symbols are
included via their position in a “Symbol” font. Some graphical browsers can be configured to display
this in a useful manner, chetke Tth homepagfor more details.

If the mtrans argument is set toMathML" it is assumed that you have installed the translation
programttm, see alsahe Tth homepage This is used to translate the contents of theath and
Display elements to MathML 2.0 markup. The resulting files should conform to the "XHTML 1.1
plus MathML 2.0” standard, sebe W3C informatiorfor more details. It is expected that the next
generation of graphical browsers will be able to render such files (try for example 1a, at least
0.9.9). You must copy thexsl and .css files from GAPDocs mathml directory to the directory
containing the output files. The translation wittm is still experimental. The output of this converter
variant is garbage for browsers which don’t support MathML.

This function works by running recursively through the document tree and calling a han-
dler function for eachGAPDoc XML element. Many of these handler functions (usually in
GAPDoc2TextProcs.<ElementName>) are not difficult to understand (the greatest complications

http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/REC-CSS2
http://hutchinson.belmont.ma.us/tth/
http://hutchinson.belmont.ma.us/tth/
http://www.w3.org/TR/MathML2/

GAPDoc 52

are some commands for index entries, labels or the output of page humber information). So it should
be easy to adjust certain details to your own taste by slight modifications of the program.

The result of this converter can be written to files with the command
GAPDocC2HTMLPrintHTMLFiles (5.3.8.

5.3.8 GAPDOC2HTMLPrintHTMLFiles

{ GAPDoc2HTMLPrintHTMLFiles (tf[, path]) (function)

Returns: nothing

The first argument must be a result returnedshypoc2HTML (5.3.7). The second argument is a
path for the files to write, it can be given as string or directory object. The text of each chapter is writ-
ten into a separate file with nameap0.html, chapl.html, ...,chapBib.html, andchapInd.html.

The experimental versions which are produced with or ttm use different names for the files,
namelychap0_sym.html, and so on for files which need symbol fonts am@p0_mm1.xml for files
with MathML translations.

You may also want to place a style sheet filenual.css into the same directory as the
HTML files. You can copy for example the fileapdoc.css in the root directory of theGAP-
Doc package Hilename(Directory(PackageInfo("gapdoc") [1].InstallationPath),
"gapdoc.css") ;).

5.3.9 InfoGAPDoc
¢ InfoGAPDoc (info class)
The default level of this info class is 1. The converter functionsaPDoc documents are then

printing some information. You can suppress this by setting the level ofcapDoc to 0. With level
2 there may be some more information for debugging purposes.

5.4 Testing Manual Examples

We also provide some tools to check the examples givetFitample>-elements.

5.4.1 ManualExamples

{ ManualExamples (path, main, files, units) (function)
Returns: a list of strings
{ ManualExamplesXMLTree (tree, units) (function)

Returns: a list of strings

The argumentree must be a parse tree ofsAPDoc document, seBarseTreeXMLFile (5.2.7).
The functionManualExamplesXMLTree returns a list of strings containing the contentafxample>
elements. For each example there is a comment line showing the paragraph number and (if avail-
able) the original location of this example with file and line number. Depending on the argument
units several examples are colleected in one string. Recognized valuasifor are"Chapter",
"Section", "Subsection" Or "Single". The latter means that each example is in a separate string.
For all other value ofinits just one string with all examples is returned.

GAPDoc 53

The argumentspath , main and files of ManualExamples are the same as for
ComposedDocument (4.2.1). This function first contructs and parses ttBwPDoc document and then
appliesManualExamplesXMLTree.

5.4.2 ReadTestExamplesString

{Q ReadTestExamplesString (Str) (function)
Returns: true orfalse

O TestExamplesString (Str[, print]) (function)
Returns: true or a list of records

{Q TestManualExamples ([tree][,][path, main, files]) (function)

Returns: true or a list of records

The argumenstr must be a string containing lines for the test modeGa#. The function
ReadTestExamplesString just runskeadTest (Reference: ReadTegton this code.

The functionTestExamplesString returnstrue if ReadTest (Reference: ReadTegtdoes not
find differences. In the other case it returns a list of record, where each record describes one difference.
The record have fieldsl ine with the line number of the relevant input linestf , . input with the
input line and. diff with the differences as displayed byadTest (Reference: ReadTest If the
optional argumenprint is given and set tarue then the differences are also printed before the
function returns.

The arguments of the functiarstManualExamples is either a parse tree oil@APDoc document
or the information to build and parse such a document. The function extracts all exaniiesdgne "
units and applieSestExamplesString to them.

Example
gap> TestExamplesString("gap> 1+1;\n2\n");
true
gap> TestExamplesString("gap> 1+1;\n2\ngap> 2+3;\n4\n");
[rec(line := 3, input := "gap> 2+3;", diff := "+ 5\n- 4\n")]

gap> TestExamplesString("gap> 1+1;\n2\ngap> 2+3;\n4\n", true);
——————————— bad example -——-----

line: 3

input: gap> 2+3;

differences:

+5

-4

[rec(line := 3, input := "gap> 2+3;", diff := "+ 5\n- 4\n")]

Chapter 6

String and Text Utilities

6.1 Text Utilities

This section describes some utility functions for handling texts widw®. They are used by the
functions in theGAPDoc package but may be useful for other purposes as well. We start with some
variables containing useful strings and go on with functions for parsing and reformatting text.

6.1.1 WHITESPACE

Q) WHITESPACE (global variable)
{ CAPITALLETTERS (global variable)
¢ SMALLLETTERS (global variable)
{ LETTERS (global variable)
O DIGITS (global variable)
Q) HEXDIGITS (global variable)

These variables contain sets of characters which are useful for text processing. They are defined
as follows.

WHITESPACE " \n\t\zr"

CAPITALLETTERS "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
SMALLLETTERS "abcdefghijklmnopgrstuvwxyz"

LETTERS concatenation of CAPITALLETTERS and SMALLLETTERS
DIGITS "0123456789"

HEXDIGITS "0123456789ABCDEFabcdef"

6.1.2 TextAttr

O TextAttr (global variable)

The recordrextAttr contains strings which can be printed to change the terminal attribute for the
following characters. This only works with terminals which understand basic ANSI escape sequences.

54

GAPDoc 55

Try the following example to see if this is the case for the terminal you are using. It shows the effect
of the foreground and background color attributes and of.the d, .blink, .normal, .reverse
and.underscore which can partly be mixed.
Example
extra := ["CSI", "reset", "delline", "home"];;
for t in Difference (RecNames (TextAttr), extra) do

Print (TextAttr. (t), "TextAttr.", t, TextAttr.reset,"\n");
od;

The suggested defaults for colars. 7 are black, red, green, brown, blue, magenta, cyan, white. But
this may be different for your terminal configuration.
The escape sequencée11ine deletes the content of the current line amdme moves the cursor
to the beginning of the current line.
Example

for i in [1..5] do
Print (TextAttr.home, TextAttr.delline, String(i,-6), "\c");
Sleep(1l);

od;

Whenever you use this in some printing routines you should make it optional. Use these attributes
only, when the variablensT_C0L0RS has the value rue.

6.1.3 FormatParagraph

O FormatParagraph (str[, len][, flush][, attr][, widthfun],]]) (function)
Returns: the formatted paragraph as string
This function formats a text given in the stristy as a paragraph. The optional arguments have
the following meaning:

len the length of the lines of the resulting text (default &

flush can be"left", "right", "center" or "both", telling that lines should be flushed left,
flushed right, centered or left-right justified, respectively (defaulbisth™")

attr is a list of two strings; the first is prepended and the second appended to each line of the
result (can for example be used for indenting,", ""1, or some markupTextAttr.bold,
TextAttr.reset], defaultis("", ""])

widthfun must be a function which returns the display width of texdtin . The default iS.ength
assuming that each byte corresponds to a character of width orséx. Ifs given inUTF-8
encoding one can use dthUTF8String (6.2.3 here.

This function tries to handle markup with the escape sequences explaimegtinctr (6.1.2 cor-
rectly.

Example
gap> str := "One two three four five six seven eight nine ten eleven.";;
gap> Print (FormatParagraph (str, 25, "left", ["/* ", " *x/"]));

/* One two three four five */
/* six seven eight nine ten */
/* eleven. */

GAPDoc 56

6.1.4 SubstitutionSublist

O SubstitutionSublist (list, sublist, new|, flag]) (function)

Returns: the changed list

This function looks for (non-overlapping) occurrences of a subliblist inalistlist (com-
parepositionSublist (Reference: PositionSublisf) and returns a list where these are substituted
with the listnew.

The optional argumeritag can either be'all" (this is the default if not given) ofone". In
the second case only the first occurrenceuddlist is substituted.

If sublist does not occur inlist then list itself is returned (and not a
ShallowCopy (list)).

Example
gap> SubstitutionSublist ("xababx", "ab", "a");
"XaaX"
6.1.5 StripBeginEnd
{ StripBeginEnd (list, strip) (function)

Returns: changed string

Herelist andstrip must be lists. This function returns the sublist of list which does not
contain the leading and trailing entries which are entriegrgd . If the resultis equal tist then
list itselfis returned.

Example
gap> StripBeginEnd(" ,a, b,c, "o ")
"a, b’C"

6.1.6 StripEscapeSequences

{Q StripEscapeSequences (Str) (function)
Returns: string without escape sequences
This function returns the string one gets from the stisirg by removing all escape sequences
which are explained imextAttr (6.1.9. If str does not contain such a sequence tsten itself is
returned.

6.1.7 RepeatedString
{ RepeatedString(c, len) (function)
Here ¢ must be either a character or a string ded is a non-negative number. Then

RepeatedString returns a string of lengtlen consisting of copies af.
Example

gap> RepeatedString(’=',51);

n n

gap> RepeatedString("*=",51);

Mk —kh—hk =k =k =k =k =k =k ==k =k =k =k =k =k =k =k =k =k =k =k =k =k =% T

GAPDoc 57

6.1.8 NumberDigits

O NumberDigits (str, base) (function)
Returns: integer
O DigitsNumber (n, base) (function)

Returns: string

The argumenstr of NumberDigits must be a string consisting only of an optional leading
and characters in123456789%abcdefABCDEF, describing an integer in bagase with 2 < base <
16. This function returns the corresponding integer.

The functiondigitsNumber does the reverse.
Example

gap> NumberDigits ("1A3F",16);
6719

gap> DigitsNumber (6719, 16);
"1A3F"

6.1.9 PositionMatchingDelimiter

{Q PositionMatchingDelimiter (Str, delim, pos) (function)

Returns: position as integer ofail

Herestr must be a string andelim a string with two different characters. This function
searches the smallest positiorof the charactedelim [2] in str such that the number of occur-
rences oflelim [2] instr between positionpos +1 andr is by one greater than the corresponding
number of occurrences delim [1].

If such anr exists, it is returned. Otherwigail is returned.

Example
gap> PositionMatchingDelimiter ("{}x{ab{c}d}", "{}", 0);
fail
gap> PositionMatchingDelimiter ("{}x{ab{c}d}", "{}", 1);
2
gap> PositionMatchingDelimiter ("{}x{ab{c}d}", "{}", 6);
11
6.1.10 WordsString
O WordsString (Str) (function)

Returns: list of strings containing the words
This returns the list of words of a text stored in the striig . All non-letters are considered as
word boundaries and are removed.

Example
gap> WordsString ("one_two \n three!?");
["One", "tWO", "three"}
6.1.11 Base64String
{Q Base64String (Str) (function)
{ StringBase64 (bstr) (function)

Returns: a string

GAPDoc 58

The first function translates arbitrary binary data given as a GAP string ibsa 64encoded
string. This encoded string contains only printable ASCII characters and is used in various data
transfer protocolsMIME encoded emails, weak password encryption, ...). We use the specification in
RFCA 2045

The second function has the reverse functionality. Here we also accept the charaotstsad
of +/ as last two characters. Whitespace is ignored.
Example
gap> b := Base64String("This is a secret!");
"VGhpcyBpcyBhIHN1Y3J1dCEA="
gap> StringBase64 (b);
"This is a secret!"

6.2 Unicode Strings

The GAPDoc package provides some tools to deal with unicode characters and strings. These can be
used for recoding text strings between various encodings.

6.2.1 Unicode Strings and Characters

¢ Unicode (list[, encoding]) (operation)
¢ UChar (num) (operation)
Q) IsUnicodeString (filter)
{ IsUnicodeCharacter (filter)
Q IntListUnicodeString (UStr) (function)

Unicode characters are described by tisedepointan integer in the range from 0 t8'2- 1. For
details about unicode, seetp://www.unicode.org.

The function UChar wraps an integernum into a GAP object lying in the filter
IsUnicodeCharacter. UseInt to get the codepoint back. The argumenin can also be &AP
character which is then translated to an integenwia.CHAR (Reference: INT.CHAR).

Unicode produces &AP object in the filtertsunicodeString. This is a wrapped list of integers
for the unicode characters in the string. The functienListUnicodeString gives access to this
list of integers. Basic list functionality is available fogUnicodeString elements. The entries are in
IsUnicodeCharacter. The argumenlist for Unicode is either a list of integers or @AP string.
In the latter case aencoding can be specified as string, its default isF-8".

Currently supported encodings can be found UNICODE_RECODE.NormalizedEncodings
(ASCII, 1SO-8859-X, UTF-8 and aliases). The encoding." means an ASCII encoding in which
non-ASCIl characters are specified by XML character entities. The encadiy' is for URL-
encoded (also called percent-encoded strings, as specified in RFG&28befe The listed encod-
ings"LaTex" and aliases cannot be used withi code. See the operatiothcode (6.2.2 for mapping
a unicode string to AP string.

Example
gap> ustr := Unicode("a and \366", "latinl");
Unicode ("a and 6")

gap> ustr = Unicode("a and ö", "XML");
true

gap> IntListUnicodeString(ustr);

http://tools.ietf.org/html/rfc2045
http://www.unicode.org
http://www.ietf.org/rfc/rfc3986.txt

GAPDoc 59

[97, 32, 97, 110, 100, 32, 246]

gap> ustr[7];
Y

6.2.2 Encode

{Q Encode (ustr[, encoding]) (operation)
Returns: aGAP string

¢ SimplifiedUnicodeString (ustr[, encoding][, "single"]) (function)
Returns: a unicode string

{Q LowercaseUnicodeString (Ustr) (function)
Returns: a unicode string

{ UppercaseUnicodeString (Ustr) (function)
Returns: a unicode string

Q) LaTeXUnicodeTable (global variable)

¢ SimplifiedUnicodeTable (global variable)

{ LowercaseUnicodeTable (global variable)

The operatiorEncode translates a unicode stringstr into a GAP string in some specified
encoding . The default encoding i$UTF-8".

Supported encodings can be foundUKNICODE_RECODE.NormalizedEncodings. Except for
some cases mentioned below characters which are not available in the target encoding are substituted
by '?’ characters.

If the encoding is "URL" (seeUnicode (6.2.1) then an optional argumeahcreserved can
be given, it must be a list of reserved characters which should be percent encoded; the default is to
encode only the character.

The encoding'LaTex" substitutes non-ASCII characters antiEX special characters byTgX
code as given in an ordered lisiTexUnicodeTable of pairs [codepoint, string]. If you have a
unicode character for which no substitution is contained in that list, you will get a warning. In this
case find a substitution and add a corresponding [codepoint, string] pairé&UnicodeTable Using
Addset (Reference: AddSe). Also, please, tell th&APDoc authors about your addition, such that
we can extend the listaTexUnicodeTable. (Most of the initial entries were generated from lists in
the X projects enc@X anducs.)

There is also the variant encodingaTeXleavemarkup", which does the same translations for
non-ASCII characters but leaves tA&dX special characters (e.g., afyfeX commands) as they are.

Note that the'LaTex" encoding can only be used withcode but not for the opposite translation
with Unicode (6.2.1) (which would need far too complicated heuristics).

The functionsimplifiedUnicodeString can be used to substitute many non-ASCII charac-
ters by related ASCII characters or strings (e.g., by a corresponding character without accents). The
argumentustr and the result are unicode stringsgifcoding is"aAsc11" then all non-ASCII char-
acters are translated, otherwise only the non-latinl characters. If the 'sitingle" in an argument
then only substitutions are considered which don’t make the result string longer. The translations are
stored in a sorted listimplifiedUnicodeTable. Its entries are of the formcodepoint, transi,
trans2, ...]. Heretransl and so on is either an integer for the codepoint of a substitution char-
acter or it is a list of codepoint integers. If you are missing characters in this list and know a sensible
ASCII approximation, then add an entry (witkidset (Reference: AddSe)) and tell theGAPDoc

GAPDoc 60

authors about it. (The initial content 6fmplifiedUnicodeTable was mainly generated from the
“transtab” tables by Markus Kuhn.)

The function LowercaseUnicodeString gets and returns a unicode string and translates
each uppercase character to its corresponding lowercase version. This function uses a list
LowercaseUnicodeTable Of pairs of codepoint integers. This list was generated using the file
UnicodeData.txt from the unicode definition (field 14 in each row).

The functionUppercaseUnicodeString does the similar translation to uppercase characters.
Example
gap> ustr := Unicode("a and ö", "XML");
Unicode ("a and o")
gap> SimplifiedUnicodeString(ustr, "ASCII");
Unicode ("a and oe")
gap> SimplifiedUnicodeString(ustr, "ASCII", "single");
Unicode ("a and o")

gap> ustr2 := UppercaseUnicodeString(ustr);;
gap> Print (Encode (ustr2, GAPInfo.TermEncoding), "\n");
A AND O

6.2.3 Lengths of UTF-8 strings

Q WidthUTF8String (str) (function)
Q NrCharsUTF8String (Str) (function)

Returns: an integer

Letstr be aGAP string with text in UTF-8 encoding. There are three “lengths” of such a string
which must be distinguished. The operatiimgth (Reference: Length returns the number of
bytes and so the memory occupieddtly . The functiorNrCharsUTF8String returns the number of
unicode characters str , that is the length ofnicode (str).

In many applications the functiomi dthUTF8String iS more interesting, it returns the number
of columns needed by the string if printed to a terminal. This takes into account that some unicode
characters are combining characters and that there are wide characters which need two columns (e.g.,
for Chinese or Japanese). (To be precise: This implementation assumes that there are no control
characters irstr and uses the character width returned byheidth function in the GNU C-
library called with UTF-8 locale.)
Example
gap> # A, German umlaut u, B, zero width space, C, newline
gap> str := Encode(Unicode("AüB​C\n", "XML"));;
gap> Print (str);
AliBC
gap> # umlaut u needs two bytes and the zero width space three
gap> Length(str);
9
gap> NrCharsUTF8String(str);
6
gap> # zero width space and newline don’t contribute to width
gap> WidthUTF8String(str);
4

GAPDoc 61

6.3 Print Utilities

The following printing utilities turned out to be useful for interactive work with textsiP. But they
are more general and so we document them here.

6.3.1 PrintTol

O PrintTol (filename, fun) (function)
O AppendTol (filename, fun) (function)

The argumenfun must be a function without arguments. Everything which is printed by
a callfun() is printed into the fileflename . As with PrintTo (Reference: PrintTo) and
AppendTo (Reference: AppendTq this overwrites or appends to, respectively, a previous content
of filename

These functions can be particularly efficient when many small pieces of text shall be written to a
file, because no multiple reopening of the file is necessary.
Example

gap> f := function() local i;
> for 1 in [1..100000] do Print (i, "\n"); od; end;;
gap> PrintTol ("nonsense", f); # now check the local file ‘nonsense’

6.3.2 StringPrint

O StringPrint (0bjl[, obj2[, ...]]) (function)
¢ StringView (0bj) (function)

These functions return a string containing the output Bt ant or viewObj call with the same
arguments.

This should be considered as a (temporary?) hack. It would be better tathave;y (Reference:
String) methods for allGAP objects and to have a genericint (Reference: Prinf)-function which
just interprets these strings.

6.3.3 PrintFormattedString

Q PrintFormattedString (Str) (function)

This function prints a stringtr . The difference te@rint (str) ; is that no additional line breaks
are introduced bgAP’s standard printing mechanism. This can be used to print lines which are longer
than the current screen width. In particular one can print text which contains escape sequences like
those explained imextAttr (6.1.2), where lines may have more characters thiaible characters

6.3.4 Page

O Page (...) (function)
{Q PageDisplay (0bj) (function)

GAPDoc 62

These functions are similar terint (Reference: Prinf) andDisplay (Reference: Display,
respectively. The difference is that the output is not sent directly to the screen, but is piped into the

current pager; seenGER (Reference: Pagey.
Example

gap> Page([1..1421]140);
gap> PageDisplay (CharacterTable ("Symmetric", 14));

6.3.5 StringFile

O StringFile (filename) (function)
¢ Filestring (filename, str[, append]) (function)

The functionstringFile returns the content of fillename as a string. This works efficiently
with arbitrary (binary or text) files. If something went wrong, this function retutnisl .
Conversely the functiopilestring writes the content of a stringtr into the filefilename
If the optional third argumerdppend is given and equalsrue then the content aftr is appended
to the file. Otherwise previous content of the file is deleted. This function returns the number of bytes
written orfail if something went wrong.
Both functions are quite efficient, even with large files.

Chapter 7

Utilities for Bibliographies

A standard for collecting references (in particular to mathematical texts) is gBIbT
(http://www.ctan.org/tex-archive/biblio/bibtex/distribs/doc/). A disadvantage
of BibTeX is that the format of the data is specified with the useAddLin mind. The data format is
less suited for conversion to other document types like plain text or HTML.

In the first section we describe utilities for using data from B¥Tiles in GAP.

In the second section we introduce a new XML based data format BibXMLext for bibliographies
which seems better suited for other tasks than using it WItXL

Another section will describe utilities to deal with BibXMLext dataGaP.

7.1 Parsing BibTEX Files

Here are functions for parsing, normalizing and printing reference lists ingBibdrmat. The refer-
ence describing this format is§m85 Appendix B].

7.1.1 ParseBibFiles

{ ParseBibFiles (bibfile) (function)

Returns: list [1ist of bib-records, list of abbrevs, list of expansions]

This function parses a filkibfile (if this file does not exist the extensiamib is appended)
in BibTpX format and returns a list as followsientries, strings, texts]. Hereentries is
a list of records, one record for each reference containddbifile . Thenstrings is a list of
abbreviations defined bystring-entries inbibfile and texts is a list which contains in the
corresponding position the full text for such an abbreviation.

The records irentries store key-value pairs of a BipX reference in the fornrec (keyl =
valuel, ...). The names of the keys are converted to lower case. The type of the reference (i.e.,
book, article, ...) and the citation key are stored as components: and.Label. The records also
have a.From field that says that the data are read from a B¥o3ource.

As an example consider the following BipX file.
doc/test.bib

@string{ j = "Important Journal" }
@article{ AB2000, Author= "Fritz A. First and Sec, X. Y.",
TITLE="Short", journal = j, year = 2000 }

63

http://www.ctan.org/tex-archive/biblio/bibtex/distribs/doc/

GAPDoc 64

Example
gap> bib := ParseBibFiles ("doc/test.bib");
[[rec(From := rec(BibTeX := true), Type := "article",
Label := "AB2000", author := "Fritz A. First and Sec, X. Y."
, title := "Short", journal := "Important Journal",
year := "2000") I, ["3" 1, ["Important Journal"]]
7.1.2 NormalizedNameAndKey
{ NormalizedNameAndKey (namestr) (function)
Returns: list of strings and names as lists
Q NormalizeNameAndKey (I) (function)

Returns: nothing

The argumenhamestr must be a string describing an author or a list of authors as described
in the BibTeX documentation inl[am85 Appendix B 1.2]. The functiomormalizedNameAndKey
returns a list of the form [normalized name string, short key, long key, names as lists]. The first entry
is a normalized form of the input where names are written as “lasthname, first name initials”. The
second and third entry are the name parts of a short and long key for the bibliography entry, formed
from the (initials of) last names. The fourth entry is a list of lists, one for each name, where a name is
described by three strings for the last name, the first name initials and the first name(s) as given in the
input.

Note that the determination of the initials is limited to names where the first letter is described by
a single character (and does not contain some markup, say for accents).

The functionNormalizeNameAndKey gets as argumemt a record for a bibliography entry as re-
turned byparseBibFiles (7.1.]). It substitutes author and.editor fields ofr by their normalized
form, the original versions are stored in fieldsithororig and.editororig.

Furthermore a short and a long citation key is generated and stored in componentsedkey
(only if no .key is already bound) andkeylong.

We continue the example frorarseBibFiles (7.1.7).
Example
gap> bib := ParseBibFiles ("doc/test.bib");;
gap> NormalizedNameAndKey (bib[1][1].author);
["First, F. A. and Sec, X. Y.", "FS", "firstsec",

[["First", "F. A.", "Fritz A."], ["Sec", "X. Y.", "X. Y."]]]

gap> NormalizeNameAndKey (bib[1][1]);
gap> bib[1][1];

rec(From := rec(BibTeX := true), Type := "article",
Label := "AB2000", author := "First, F. A. and Sec, X. Y.",
title := "Short", journal := "Important Journal", year := "2000",
authororig := "Fritz A. First and Sec, X. Y.", printedkey := "FS00",
keylong := "firstsec2000")

7.1.3 WriteBibFile

O WriteBibFile (bibfile, bib) (function)
Returns: nothing
This is the converse dfarseBibFiles (7.1.1). Herebib either must have a format as list
of three lists as it is returned arseBibFiles (7.1.0). Or bib can be a record as returned by

GAPDoc 65

ParseBibXMLextFiles (7.3.3. A BibTEX file bibfile is written and the entries are formatted in
a uniform way. All given abbreviations are used while writing this file.
We continue the example frofbrmalizeNameAndKey (7.1.2). The command

Example
gap> WriteBibFile("nicer.bib", bib);
produces afileicer.bib as follows:
nicer.bib
@string{j = "Important Journal" }
Qarticle{ AB2000,
author = {First, F. A. and Sec, X. Y.},
title = {Short},
journal = I
year = {2000},
authororig = {Fritz A. First and Sec, X. Y.},
keylong = {firstsec2000},
printedkey = {FS00}
}
7.1.4 InfoBibTools
Q) InfoBibTools (info class)

The default level of this info class is 1. Functions likerseBibFiles (7.1.1), StringBibAs. ..
are then printing some information. You can suppress it by setting the levelfoBibTools to O.
With level 2 there may be some more information for debugging purposes.

7.2 The BibXMLext Format

Bibliographical data in BibgX files have the disadvantage that the actual data are giveTgK L
syntax. This makes it difficult to use the data for anything but A&X, say for representations of

the data as plain text or HTML. For example: mathematical formulae ardgX s environments,
non-ASCII characters can be specified in many strange ways, and how to specify URLSs for links if
the output format allows them?

Here we propose an XML data format for bibliographical data which addresses these problems,
it is called BibXMLext. In the next section we describe some tools for generating (an approximation
to) this data format from BilgX data, and for using data given in BibXMLext format for various
purposes.

The first motivation for this development was the handling of bibliographical da@@aiRDoc, but
the format and the tools are certainly useful for other purposes as well.

We started from a DTD bibxml.dtd which is publicly available, say from
http://bibtexml.sf.net/. This is essentially a reformulation of the definition of the BT
format, including several of some widely used further fields. This has already the advantage that a
generic XML parser can check the validity of the data entries, for example for missing compulsary
fields in entries. We applied the following changes and extensions to define the DTD for BibXMLext,
stored in the fileibxmlext .dtd which can be found in the root directory of thd\PDoc package
(and in AppendixC):

http://bibtexml.sf.net/

GAPDoc 66

names Lists of names in theuthor andeditor fields in BibTeX are difficult to parse. Here they
must be given by a sequence-ofiame>-elements which each contain an optiorali rst>-
and a<last>-element for the first and last names, respectively.

<M> and <Math > These elements enclose mathematical formulae, the contéfisdode (with-
out thes). These should be handled in the same way as the elements with the same names in
GAPDoc, see3.8.2and3.8.1 In particular, simple formulae which have a well defined plain
text representation can be givendmi>-elements.

Encoding Note that in XML files we can use the full range of unicode characters, see
http://www.unicode.org/. All non-ASCII characters should be specified as unicode char-
acters. This makes dealing with special characters easy for plain text or HTML, only for use
with IATEX some sort of translation is necessary.

<URL> These elements are allowed everywhere in the text and should be represented by links in
converted formats which allow this. It is used in the same way as the element with the same
name inGAPDoc, se€3.5.5

<Alt Only="..." > and <Alt Not="..." > Sometimes information should be given in dif-
ferent ways, depending on the output format of the data. This is possible withzhe>-
elements with the same definition as3APDoc, see3.9.1

<C> This element should be used to protect text from case changes by converters (thg} extra
characters in BibgX title fields).

<string key="..." value="..."/ > and <value key="..."/ > The <string>-
element defines key-value pairs which can be used in any field viatheue>-element (not
only for whole fields but also parts of the text).

<other type="..." > This is a generic element for fields which are otherwise not supported.
An arbitrary number of them is allowed for each entry, so any kind of additional data can be
added to entries.

<Wrap Name="..." > This generic element is allowed inside all fields. This markup will be just
ignored (but not the element content) by our standard tools. But it can be a useful hook for
introducing arbitrary further markup (and our tools can easily be extended to handle it).

Extra entities The DTD defines the standard XML entitie®.1.10and the entitiesnbsp; (non-
breakable spacejndash; andscopyright;. Usesndash; in page ranges.

For further details of the DTD we refer to the filebxmlext .dtd itself which is shown in appendix

C. That file also recalls some information from the BiXTdocumentation on how the standard fields

of entries should be used. Which entry types and which fields are supported (and the ordering of
the fields which is fixed by a DTD) can be either read off the DTD, or withP one can use the
functionTemplateBibXML (7.3.9 to get templates for the various entry types.

Here is an example of a BibXMLext document:
doc/testbib.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE file SYSTEM "bibxmlext.dtd">
<file>
<string key="3j" value="Important Journal"/>

http://www.unicode.org/

GAPDoc 67

<entry i1d="AB2000"><article>
<author>
<name><first>Fritz A.</first><last>First</last></name>
<name><first>X. Y.</first><last>Secőnd</last></name>
</author>
<title>The <Wrap Name="Package"> <C>F</C>ritz</Wrap> package for the
formula <M>x"y - 1_{{i+1}} \rightarrow \mathbb{R}</M></title>
<journal><value key="3j"/></journal>
<year>2000</year>
<number>13</number>
<pages>13–25</pages>
<note>Online data at <URL Text="Bla Bla Publisher">
http://www.publish.com/ ImpJ/123#data</URL></note>
<other type="mycomment">very useful</other>
</article></entry>
</file>

There is a standard XML header and@TYPE declaration refering to theibxmlext.dtd DTD
mentioned above. Local entities could be defined inttheTYPE tag as shown in the example in
2.2.3 The actual content of the document is insidefa 1e>-element, it consists 6f st ring>- and
<entry>-elements. Several of the BibXMLext markup features are shown. We will use this input
document for some examples below.

7.3 Utilities for BibXMLext data

7.3.1 Translating BibTEX to BibXMLext

First we describe a tool which can translate bibliography entries fromgildfita to BibXMLext
<entry>-elements. It also does some validation of the data. In some cases it is desirable to improve
the result by hand afterwards (editing formulae, addingL>-elements, translating non-ASCII char-
acters to unicode, ...).

SeeWriteBibXMLextFile (7.3.4 below for how to write the results to a BibXMLext file.

7.3.2 StringBibAsXMLext

¢ StringBibAsxMLext (bibentry[, abbrvs, vals][, encoding]) (function)
Returns: a string with XML code, orfail
The argumenbibentry is a record representing an entry from a BiiTile, as returned in the
first list of the result obParseBibFiles (7.1.1). The optional two argumentbbrvs andvals can
be lists of abbreviations and substitution strings, as returned as second and third list element in the
result ofparseBibFiles (7.1.1). The optional argumemncoding specifies the character encoding
of the string components aibentry . If this is not given it is checked if all strings are valid UTF-8
encoded strings, in that case it is assumed that the encoding is UTF-8, otherwise the latinl encoding
is assumed.
The functionStringBibAsXMLext creates XML code of arcentry>-element inBibXMLext
format. The resultis in UTF-8 encoding and contains some heuristic translations, like splitting name
lists, finding places fokCc>-elements, putting formulae iaM>-elements, substituting some char-
acters. The result should always be checked and maybe improved by hand. Some validity checks

GAPDoc 68

are applied to the given data, for example if all non-optional fields are given. If this check fails the
function returnstail.

As an example we consider again the short Biofile doc/test.bib shown in the example for
ParseBibFiles (7.1.]).
Example
gap> bib := ParseBibFiles ("doc/test.bib");;
gap> str := StringBibAsXMLext (bib[1][1], bib[2], bib[3]);;
gap> Print (str, "\n");
<entry 1d="AB2000"><article>
<author>
<name><first>Fritz A.</first><last>First</last></name>
<name><first>X. Y.</first><last>Sec</last></name>
</author>
<title>Short</title>
<journal><value key="j"/></journal>
<year>2000</year>
</article></entry>

The following functions allow parsing of data which are already in BibXMLext format.

7.3.3 ParseBibXMLextString

{Q ParseBibXMLextString (Str) (function)
O ParseBibxMLextFiles (fnamel[, fname2[, ...]]) (function)
Returns: arecord with fieldsentries, .strings and.entities
The first function gets a stringtr containing aBibxMLext document or a part of it. It returns
a record with the three mentioned fields. Heeatries is a list of partial XML parse trees for the
<entry>-elements instr . The field.strings is a list of key-value pairs from the string>-
elements irstr . And .strings is a list of name-value pairs of the named entities which were used
during the parsing.
The second functiomarseBibXMLextFiles uses the first on the content of all files given by
filenamednamel and so on. It collects the results in a single record.
As an example we parse the filestbib.xml shown in7.2
Example
gap> bib := ParseBibXMLextFiles("doc/testbib.xml");;
gap> RecFields (bib);
["entries", "strings", "entities"]
gap> bib.entries;
[<BibXMLext entry: AB2000>]
gap> bib.strings;
[["j", "Important Journal"]]
gap> bib.entities[1];
["amp", "&#38;"]

7.3.4 WriteBibXMLextFile

O WriteBibXMLextFile (fname, bib)
Returns: nothing
This function writes a BibXMLext file with namfname .

(function)

GAPDoc 69

There are three possibilities to specify the bibliography entries in the arguitentlt can be a
list of three lists as returned IparseBibFiles (7.1.7). Or it can be just the first of such three lists
in which case the other two lists are assumed to be empty. To all entries of the (first) list the function
StringBibAsxMLext (7.3.2 is applied and the resulting strings are written to the result file.

The third possibility is thabib is a record in the format as returnediyrseBibXMLextString
(7.3.3 andprarseBibxMLextFiles (7.3.3. In this case the entries for the BibXMLext file are pro-
duced withstringxMLElement (5.2.2, and ifbib .entities is bound thenitis tried to resubstitute
parts of the string by the given entities witht itySubstitution (5.2.3.

As an example we write back the result of the example showpdogseBibxMLextFiles (7.3.3
to an equivalent XML file.
Example

gap> bib := ParseBibXMLextFiles ("doc/testbib.xml");;
gap> WriteBibXMLextFile ("test.xml", bib);

7.3.5 Bibliography Entries as Records

For working with BibXMLext entries we find it convenient to first translate the parse tree of an entry,

as returned byarseBibxMLextFiles (7.3.3, to a record with the field names of the entry as com-
ponents whose value is the content of the field as string. These strings are generated with respect to
a result type. The records are generated by the following function which can be customized by the
user.

7.3.6 RecBibXMLEntry

{ RecBibXMLEntry (entry[, restype][, strings][, options]) (function)

Returns: a record with fields as strings

This function generates a content string for each field of a bibliography entry and assigns them to
record components. This content may depend on the requested result type and possibly some given
options.

The arguments are as followsntry is the parse tree of arentry> element as returned
by ParseBibxMLextString (7.3.3 or ParseBibXMLextFiles (7.3.3. The optional argument
restype describes the type of the result. This package supports currently the 'tgpesex",
"Text" and "HTML". The default is"BibTex". The optional argumergtrings must be a list
of key-value pairs as returned in the componesitrings in the result ofParseBibXMLextString
(7.3.3. The argumenbptions must be a record.

If the entry contains aauthor field then the result will also contain a componeatthorAsList
which is a list containing for each author a list with three entries of the forast name, first
name initials, first name] (the third entry means the first name as given in the data). Similarly,
aneditor field is accompanied by a componertiitorAsList.

The followingoptions are currently supported.

If options. fullname is bound and set torue then the full given first names for authors and edi-
tors will be used, the default is to use the initials of the first names. Alsptifons.namefirstlast
is bound and set torue then the names are written in the form “first-name(s) last-name”, the default
is the form “last-name, first-name(s)”.

If options.href is bound and set t@alse then the"BibTeX" type result will not usé href
commands. The default is to produceref commands from<URL>-elements such thafTgX with
thehyperref package can produce links for them.

GAPDoc 70

The content of ankAlt>-element withonly-attribute is included ifestype is given in the
attribute and ignored otherwise, and vice versa in caseftaattribute. If options.useAlt is
bound, it must be a list of strings to whickstype is added. Then aralt>-element withonly-
attribute is evaluated if the intersectiona@ft ions.useAlt and the types given in the attribute is not
empty. In case of 8ot-attribute the element is evaluated if this intersection is empty.

If restype is "BibTeX" then the string fields in the result will be recoded witttode (6.2.2
and target'LaTex". If options.hasLaTeXmarkup is bound and set terue (for example, because
the data are originally read from BigX files), then the targetLaTexleavemarkup™ will be used.

We use again the file shown in the exampleHerseBibXxMLextFiles (7.3.3.

Example
gap> bib := ParseBibXMLextFiles ("doc/testbib.xml");;
gap> e := bib.entries[l];; strs := bib.strings;;
gap> Print (RecBibXMLEntry (e, "BibTeX", strs), "\n");
rec (
From := rec|(
BibXML := true,
type := "BibTeX",
options := rec(
))y
Label := "AB2000",
Type := "article",
authorAsList :=
[["First", "F. A.", "Fritz A."], ["Sec\305\221nd", "X. Y.",
"X.Y."],
author := "First, F. A. and Sec{\\H o}nd, X. Y.",
title :=
"The \\textsf{ {F}ritz} package for the \n formula $x"y - 1\
_{{i+1}} \\rightarrow \\mathbb{R}$",
journal := "Important Journal",
year := "2000",
number := "13",
pages := "13{\\textendash}25",
note :=
"Online data at \\href {http://www.publish.com/ ImpJ/123#data} {Bla\
Bla Publisher}",
mycomment := "very useful",
printedkey := "FS00")
gap> Print (RecBibXMLEntry (e, "HIML", strs).note, "\n");
Online data at Bla Bla\
Publisher

7.3.7 AddHandlerBuildRecBibXMLEntry

¢ AddHandlerBuildRecBibxXMLEntry (elementname, restype, handler) (function)
Returns: nothing
The argumenelementname must be the name of an entry field supported by the BibXM-
Lext format, the name of one of the special elements"("M", "Math", "URL" or of the
form "Wrap:myname" or any string"mytype" (which then corresponds to entry fieldsother
type="mytype">). The string"Finish" has an exceptional meaning, see below.

GAPDoc 71

restype is a string describing the result type for which the handler is installed, see
RecBibXMLEntry (7.3.6.

For both argumentglementname andrestype , it is also possible to give lists of the de-
scribed ones for installing several handler at once.

The argumenbhandler must be a function with five arguments of the fohandler (entry,

r, restype, strings, options). Hereentry is a parse tree of a BibXMLexkentry>-
element,r is a node in this tree for an elemeslementname , andrestype , strings and
options are as explained iRecBibXMLEntry (7.3.6. The function should return a string repre-
senting the content of the node If elementname is of the form"wWrap:myname" the handler is
used for elements of formWrap Name="myname">...</Wrap>.

If elementname is "Finish" the handler should look like above except that mois the record
generated brecBibXMLEntry (7.3.6 just before it is returned. Here the handler should return noth-
ing. It can be used to manipulate the recordor example for changing the encoding of the strings
or for adding some more components.

The installed handler is called BuildrRecBibXMLEntry (entry , r, restype , strings ,
options). The string for the whole content of an element can be generated by
ContentBuildRecBibXMLEntry (entry ,r,restype ,strings ,options).

We continue the example fromecBibXMLEntry (7.3.6 and install a handler for thelrap
Name="Package" >-element such thatTgeX puts its content in a sans serif font.

Example
gap> AddHandlerBuildRecBibXMLEntry ("Wrap:Package", "BibTeX",
> function(entry, 1, restype, strings, options)
> return Concatenation ("\\textsf{", ContentBuildRecBibXMLEntry (
> entry, r, restype, strings, options), "}");
> end);
gap>
gap> Print (RecBibXMLEntry (e, "BibTeX", strs).title, "\n");
The \textsf{ {F}ritz} package for the
formula $x"y - 1_{{i+1}} \rightarrow \mathbb{R}$
gap> Print (RecBibXMLEntry (e, "Text", strs).title, "\n");
The Fritz package for the
formula x"y - 1_{i+l} -> R

7.3.8 StringBibXMLEntry

¢ StringBibXMLEntry (entry[, restype][, strings][, options]) (function)

Returns: a string

The arguments of this function have the same meaning &sdribXMLEntry (7.3.6 but the
return value is a string representing the bibliography entry in a format specifiegtype (default
IS "BibTex").

Currently, the following cases foestype are supported:

"BibTeX" A string with BibTeX source code is generated.

"Text" A text representation of the text is returnedopft ions.ansi is bound it must be a record.
The components must have nanses_TLabel, Bib_author, and so on for all fieldnames. The
value of each component is a pair of strings which will enclose the content of the field in the
result or the first of these strings in which case the default for the secardtigattr.reset

GAPDoc 72

(seeTextAttr (6.1.2). If you give an empty record here, some default ANSI color markup
will be used.

"HTML" An HTML representation of the bibliography entry is returned. The text from each field is
enclosed in markup (mostkzspan>-elements) with thelass attribute set to the field name.
This allows a detailed layout of the code via a style sheet file.

We use again the file shown in the exampleHerseBibxMLextFiles (7.3.3.

Example
gap> bib := ParseBibXMLextFiles("doc/testbib.xml");;
gap> e := bib.entries[1l];; strs := bib.strings;;

gap> ebib := StringBibXMLEntry (e, "BibTeX", strs);;
gap> PrintFormattedString(ebib);
@article{ AB2000,
author = {First, F. A. and Sec{\H o}nd, X. Y.},
title = {The \textsf{ {F}ritz} package for the formula $x°y -
1_{{i+1}} \rightarrow \mathbb{R}$},

journal = {Important Journal},

number = {13},

year = {2000},

pages = {13{\textendash}25},

note = {Online data at \href
{http://www.publish.com/ ImpJ/123#data} {Bla Bla
Publisher}},

mycomment = {very useful},

printedkey = {FS00}

}

gap> etxt := StringBibXMLEntry (e, "Text", strs);;

gap> etxt := SimplifiedUnicodeString(Unicode(etxt), "latinl", "single");;
gap> etxt := Encode (etxt, GAPInfo.TermEncoding);;

gap> PrintFormattedString(etxt);

[FS00] First, F. A. and Second, X. Y., The Fritz package for the
formula x"y - 1_{i+l} -> R, Important Journal, 132000, 13-25, Online
data at Bla Bla Publisher (http://www.publish.com/ ImpJ/123#data)

The following command may be useful to generate completly new bibliography entries in BibXM-
Lext format. It also informs about the supported entry types and field names.

7.3.9 TemplateBibXML

O TemplateBibXML ([type]) (function)

Returns: list of types or string

Without an argument this function returns a list of the supported entry types in BibXMLext docu-
ments.

With an argumentype of one of the supported types the function returns a string which is a
template for a corresponding BibXMLext entry. Optional field elements haveppended. If an
element has the wor@k appended, then either this element or the next must/can be given, not both. If
AND/OR is appended then this and/or the next can/must be given. Elements which can appear several

times have a appended. Places to fill are marked byxan
Example

gap> TemplateBibXML () ;
["article", "book", "booklet", "manual", "techreport",

GAPDoc

"mastersthesis", "phdthesis", "inbook", "incollection",
"proceedings", "inproceedings", "conference", "unpublished",
]
gap> Print (TemplateBibXML ("inbook"));
<entry id="X"><inbook>
<author>
<name><first>X</first><last>X</last></name>+
</author>0R
<editor>
<name><first>X</first><last>X</last></name>+
</editor>
<title>X</title>
<chapter>X</chapter>AND/OR
<pages>X</pages>
<publisher>X</publisher>
<year>X</year>
<volume>X</volume>*OR
<number>X</number>*
<series>X</series>*
<type>X</type>*
<address>X</address>*
<edition>X</edition>*
<month>X</month>*
<note>X</note>*
<key>X</key>*
<annotate>X</annotate>*
<crossref>X</crossref>*
<abstract>X</abstract>*
<affiliation>X</affiliation>*
<contents>X</contents>*
<copyright>X</copyright>*
<isbn>X</isbn>*0OR
<issn>X</issn>*
<keywords>X</keywords>*
<language>X</language>*
<lcen>X</lcen>*
<location>X</location>*
<mrnumber>X</mrnumber>*
<mrclass>X</mrclass>*
<mrreviewer>X</mrreviewer>*
<price>X</price>*
<slze>X</size>*
<url>X</url>*
<category>X</category>*
<other type="X">X</other>*+
</inbook></entry>

"misc"

73

Appendix A

The File 3k+1.xml

Here is the complete source of the examplPDoc documentik+1.xml discussed in Sectioh.2
3k+1.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- A complete "fake package" documentation
$Id: app3kl.xml,v 1.3 2007/02/20 16:56:27 gap Exp $
-—>

<!DOCTYPE Book SYSTEM "gapdoc.dtd">
<Book Name="3k+1">

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Authdr
<Email>3kplusone@dev.null</Email>
</Author>

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.
</Copyright>
</TitlePage>

<TableOfContents/>

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>
<Section Label="sec:theory"> <Heading>Theory</Heading>
Let <M>k \in \N</M> be a natural number. We consider the sequence

<M>n (i, k), 1 \in \N,</M> with <M>n (1, k) = k</M> and else
<M>n(i+l, k) = n(i, k) / 2</M> if <M>n(i, k)</M> is even and
<M>n(i+l, k) = 3 n(i, k) + 1</M> if <M>n (i, k)</M> is odd.

<P/>

It is not known whether for any natural number <M>k \in \N</M>
there is an <M>m \in \N</M> with <M>n(m, k) = 1</M>.

<P/>

<Package>ThreeKPlusOne</Package> provides the function <Ref

74

GAPDoc

Func="ThreeKPlusOneSequence"/> to explore this for given
<M>n</M>. If vyou really want to know something about this
problem, see <Cite Key="Wi98"/> or
<URL>http://mathsrv.ku-eichstaett.de/MGF/homes/wirsching/</URL>
for more details (and forget this package).

</Section>

<Section> <Heading>Program</Heading>
In this section we describe the main function of this package.

<ManSection>
<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>
<Description>

This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, 1if <A>max is
given.

<Example>

gap> ThreeKPlusOneSequence (101);

"Sorry, not yet implemented. Wait for Version 84 of the package"

</Example>

</Description>
</ManSection>
</Section>
</Chapter>
</Body>

<Bibliography Databases="3k+1" />
<TheIndex/>

</Book>

75

Appendix B

The File gapdoc.dtd

For easier reference we repeat here the complete content of thedidec. dtd.
gapdoc.dtd

<?xml version="1.0" encoding="UTF-8"?>
<l=-

gapdoc.dtd - XML Document type definition for GAP documentation
By Frank Libeck and Max Neunhoffer

-—>
<!-- $Id: gapdoc.dtd,v 1.15 2007/05/21 22:07:18 gap Exp $ -—>
<!-- Note that this definition goes "bottom-up" because entities can only
be used after their definition in the file. -->
<l--
Some entities:
-—>
<!-- The standard XML entities: -->
<!ENTITY 1t "&#60; ">
<!ENTITY gt "s#62;">
<!ENTITY amp "e#38; #38; ">
<!ENTITY apos "'">
<!ENTITY quot """>
<!-— The following were introduced in GAPDoc version < 1.0, it is no longer
necessary to take care of LaTeX special characters
(we keep the entities with simplified definitions for compatibility) -->

<!ENTITY tamp "&">
<!ENTITY tlt "<">
<!ENTITY tgt ">">
<!ENTITY hash "#">
<!ENTITY dollar "$">
<!ENTITY percent "%">
<!ENTITY tilde """>

76

GAPDoc

<!ENTITY bslash "\\">
<!ENTITY obrace "{">
<!ENTITY cbrace "}">
<!ENTITY uscore "_">
<!ENTITY circum "“">

<l--

Our predefined entities:

-—>
<!ENTITY nbsp " ">
<!ENTITY ndash "–">
<!ENTITY GAP "<Package>GAP</Package>">
<!ENTITY GAPDoc "<Package>GAPDoc</Package>">
<!ENTITY TeX
"<Alt Only='LaTeX’>{\TeX}</Alt><Alt Not='LaTeX’'>TeX</Alt>">
<!ENTITY LaTeX
"<Alt Only='LaTeX’>{\LaTeX}</Alt><Alt Not=’LaTeX’>LaTeX</Alt>">
<!ENTITY BibTeX
"<Alt Only='LaTeX’>{Bib\TeX}</Alt><Alt Not='LaTeX’>BibTeX</Alt>">
<!ENTITY MeatAxe "<Package>MeatAxe</Package>">
<!ENTITY XGAP "<Package>XGAP</Package>">
<!ENTITY copyright "©">
<=
The following describes the "innermost" documentation text which
can occur at various places in the document like for example
section headings. It does neither contain further sectioning
elements nor environments like Enums or Lists.
-—>

<!ENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P | Br
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Address | Cite | Label |

Ref | Index |
Ignore" >
<!ELEMENT Alt (%InnerText;)*> <!-- This is only to allow "Only" and

"Not" attributes for normal text -->
<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED>

<!-- The following elements declare a certain block of InnerText to
have a certain property. They are non-terminal and can contain
any InnerText recursively. —-->

77

GAPDoc
<!ELEMENT Emph (%InnerText;)*> <!-- Emphasize something -->
<!ELEMENT E ($InnerText;) *> <!-- the same as shortcut -->
<!-- The following is an empty element marking a paragraph boundary. -->
<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -->
<!ELEMENT P EMPTY> <!-- the same as shortcut -->
<!-- And here is an element for forcing a line break, not starting
a new paragraph. -->
<!ELEMENT Br EMPTY> <!-- a forced line break -->
<!-- The following elements mark a word or sentence to be of a certain
kind, such that it can be typeset differently. They are terminal
elements that should only contain character data. But we have to
allow Alt elements for handling special characters. For these
elements we introduce a long name - which is easy to remember -
and a short name - which vyou may prefer because of the shorter
markup. -—>
<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword —->
<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->
<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->
<!ELEMENT A (#PCDATA|Alt)*> <!-- Argument (shortcut) -->
<!ELEMENT Code (#PCDATA|Alt|A)*> <!-- GAP code -—>
<!ELEMENT C (#PCDATA|Alt|A)*> <!-- GAP code (shortcut) -->
<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->
<!ELEMENT F (#PCDATA|Alt)*> <!-- Filename (shortcut) -->
<!ELEMENT Button (#PCDATA|Alt)*> <!-- "Button" (also Menu, Key) -->
<!ELEMENT B (#PCDATA|ALlt)*> <!-- "Button" (shortcut) -->
<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->
<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text --—>
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->
<!-- The following elements contain mathematical formulae. They are
terminal elements that contain character data in TeX notation. ——>

<!-- Math with well defined translation to text output -->

<!ELEMENT

M (#PCDATA|A|Argl|Alt) *>

<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>
<!-- TeX displayed math mode formula -->
<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>

78

GAPDoc

<!-- The following elements contain GAP related text 1like code,
session logs or examples. They are all terminal elements and
consist of character data which is normally typeset verbatim. The
different types of the elements only control how they are
treated. -—>

<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic
example checking mechanism —-->
<!ELEMENT Log (#PCDATA)> <!-- This not -—>
<!ELEMENT Listing (#PCDATA)> <!-- This is just for code listings -->
<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of
listed code, may appear in

output -->
<!-- One further verbatim element, this is truely verbatim without
any processing and intended for ASCII substitutes of complicated
displayed formulae or tables. ——>
<!ELEMENT Verb (#PCDATA)>
<!-- The following elements are for cross-referencing purposes like

URLs, citations, references, and the index. All these elements
are terminal and need special methods to make up the actual
output during document generation. -->

<!ELEMENT URL (#PCDATA|Alt|Link|LinkText)*> <!-- Link, LinkText
variant for case where text needs further markup -->
<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats
that have links like HTML -->

<!ELEMENT Link ($InnerText;)*> <!-- the URL -—>
<!ELEMENT LinkText (%$InnerText;)*> <!-- text for links, can contain markup -->
<!-- The following two are actually URLs, but the element name determines

the type. ——>
<!ELEMENT Email (#PCDATA|Alt|Link|LinkText) *>
<!ELEMENT Homepage (#PCDATA|Alt|Link|LinkText)*>

<!-- Those who still want to give postal addresses can use the following
element. Use
 for specifying typical line breaks -->

<!ELEMENT Address (#PCDATA|Alt|Br)*>

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED
Where CDATA #IMPLIED>

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

<!ELEMENT Ref EMPTY>
<!ATTLIST Ref Func CDATA #IMPLIED
Oper CDATA #IMPLIED

79

GAPDoc
Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED
Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED

Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED
Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text|Number) #IMPLIED> <!-- normally automatic -->

<!-- Note that only one attribute of Ref is used normally. BookName
and Style can be specified in addition to handle external
references and the typesetting style of the reference. -->

<!-- For explicit index entries (Func and so on should cause an

automatically generated index entry). Use the attributes Key,
Subkey for sorting (simplified, without markup). The Subkey value
also gets printed. Use the optional Subkey element if the printed
version needs some markup. -—>
<!ELEMENT Index (%InnerText; |Subkey)*>
<!ATTLIST Index Key CDATA #IMPLIED
Subkey CDATA #IMPLIED>
<!ELEMENT Subkey (%InnerText;)*>

<=-

The following describes the normal documentation text which can
occur at various places in the document. It does not contain
further sectioning elements. In addition to InnerText it can contain
environments like enumerations, lists, and such.

-—>
<IENTITY % Text "$%InnerText; | List | Enum | Table">

<!ELEMENT Item (%Text;)*>
<!ELEMENT Mark (%InnerText;)*>
<!ELEMENT BigMark ($InnerText;)*>

<!ELEMENT List (((Mark,Item) | (BigMark,Item) |Item)+)>
<!ATTLIST List Only CDATA #IMPLIED
Not CDATA #IMPLIED>
<!ELEMENT Enum (Item+)>
<!ATTLIST Enum Only CDATA #IMPLIED
Not CDATA #IMPLIED>

<!ELEMENT Table (Caption?, (Row | HorLine)+)>

80

GAPDoc

<!ATTLIST Table Label CDATA #IMPLIED
Only CDATA #IMPLIED

Not CDATA #IMPLIED
Align CDATA #REQUIRED> <!-— A TeX tabular string -->
<!-- We allow | and 1,c,r, nothing else -->

<!ELEMENT Row (Itemt)>

<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption (%$InnerText;)*>

<l--

We start defining some things within the overall structure:

<!-— The TitlePage consists of several sub-elements: -->

<!ELEMENT TitlePage (Title, Subtitle?, Version?, TitleComment?,
Author+, Date?, Address?, Abstract?, Copyright?,
Acknowledgements? , Colophon?)>

<!ELEMENT Title (%Text;)*>

<!ELEMENT Subtitle (%Text;)*>

<!ELEMENT Version (%Text;)*>

<!ELEMENT TitleComment (%$Text;)*>

<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->
<!ELEMENT Date (%Text;)*>

<!ELEMENT Abstract (%Text;)*>

<!ELEMENT Copyright (%Text;)*>

<!ELEMENT Acknowledgements (%Text;)*>

<!ELEMENT Colophon (%Text;)*>

<!-- The following things just specify some information about the
corresponding parts of the Book: —-—>

<!ELEMENT TableOfContents EMPTY>

<!ELEMENT Bibliography EMPTY>

<!ATTLIST Bibliography Databases CDATA #REQUIRED
Style CDATA #IMPLIED>

<!ELEMENT TheIndex EMPTY>

<P--
The Ignore element can be used everywhere to include further
information in a GAPDoc document which is not intended for the
standard converters (e.g., source code, not yet finished stuff,
and so on. This information can be extracted by special converter
routines, more precise information about the content of an Ignore
element can be given by the "Remark" attribute.
==== -=>

<!ELEMENT Ignore (%Text;| Chapter | Section | Subsection | ManSection |
Heading) *>
<!ATTLIST Ignore Remark CDATA #IMPLIED>

81

GAPDoc

<l

Now we go on with the overall structure by defining the sectioning
structure, which includes the Synopsis element:

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes —-->
<!ELEMENT ManSection (Heading?,

((Func, Returns?) | (Oper, Returns?)

(Meth, Returns?) | (Filt, Returns?) |

(Prop, Returns?) | (Attr, Returns?) |

Var | Fam | InfoClass)+, Description)>
<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Returns (%Text;)*>
<!ELEMENT Description (%Text;)*>

<!-- Note that the ManSection element 1is actually a subsection with
respect to labelling, referencing, and counting of sectioning
elements. ——>

<!ELEMENT Func EMPTY>

<!ATTLIST Func Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!-- Note that Arg contains the full list of arguments, including
optional parts, which are denoted by square brackets [].
Arguments are separated by whitespace, commas count as
whitespace. -->

<!-- Note further that although Name and Label are CDATA (and not ID)
Label must make up a unique identifier. -->

<!ELEMENT Oper EMPTY>

<!ATTLIST Oper Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Meth EMPTY>

<!ATTLIST Meth Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Filt EMPTY>
<!ATTLIST Filt Name CDATA #REQUIRED
Label CDATA #IMPLIED

82

GAPDoc

Arg CDATA #IMPLIED
Comm CDATA #IMPLIED
Type CDATA #IMPLIED>

<!ELEMENT Prop EMPTY>

<!ATTLIST Prop Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Attr EMPTY>

<!ATTLIST Attr Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Var EMPTY>

<!ATTLIST Var Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT Fam EMPTY>

<!ATTLIST Fam Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT InfoClass EMPTY>

<!ATTLIST InfoClass Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT Heading (%$InnerText;)*>

<!ELEMENT Section (%Text;| Heading | Subsection | ManSection) *>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes —-->

<!ELEMENT Chapter (%Text;| Heading | Section)*>

<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes —-->

<!-- Note that the entity %InnerText; is documentation that contains

neither sectioning elements nor environments

like enumerations,

but only formulae, labels, references, citations, and other

terminal elements. —-—>

<!ELEMENT Appendix (%$Text;| Heading | Section)*>

<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes ——>

<!-- Note that an Appendix 1s exactly the same
differ only in the numbering. -->

as a Chapter. They

83

GAPDoc

<l=-

At last we define the overall structure of a gapdoc Book:

<!ELEMENT Body (%Text;| Chapter | Section)*>

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,
TheIndex?)>
<!ATTLIST Book Name CDATA #REQUIRED>

<!-- Note that the -entity &Text; is documentation that contains

no further sectioning elements but possibly environments

like

enumerations, and formulae, labels, references, and citations.

-—>

<l--

84

Appendix C

The File bibxmlext.dtd

For easier reference we repeat here the complete content of thesfitel ext . dtd which is explained
in7.2

bibxmlext.dtd

<?xml version="1.0" encoding="UTF-8"?>
<P--
- (C) Frank Lilbeck (http://www.math.rwth-aachen.de/ Frank.Luebeck)
- The BibXMLext data format.
- This DID expresses XML markup similar to the BibTeX language
- specified for LaTeX, or actually its content model.
- It is a variation of a file bibxml.dtd developed by the project
- http://bibtexml.sf.net/
- For documentation on BibTeX, see
- http://www.ctan.org/tex-archive/biblio/bibtex/distribs/doc/
- A previous version of the code originally developed by
- Vidar Bronken Gundersen, http://bibtexml.sf.net/
- Reuse and repurposing is approved as long as this
- notification appears with the code.
-—>
D -—>
<!-- Main structure -->
<!-- key-value pairs as in BibTeX @string entries are put in empty elements
(but here they can be used for parts of an entry field as well) -—>
<!ELEMENT string EMPTY>
<!ATTLIST string
key CDATA #REQUIRED
value CDATA #REQUIRED >
<!-- entry may contain one of the bibliographic types. -->
<!ELEMENT entry (article | book | booklet |
manual | techreport |

85

GAPDoc

mastersthesis | phdthesis |
inbook | incollection |
proceedings | inproceedings |
conference |
unpublished | misc) >
<!ATTLIST entry
id CDATA #REQUIRED >

<!-— file is the documents top element. -->
<!ELEMENT file (string | entry)* >

D -—=>
<!-- Parameter entities -->
<!-- these are additional elements often used, but not included in the
standard BibTeX distribution, these must be added to the
bibliography styles, otherwise these fields will be omitted by
the formatter, we allow an arbitrary number of ’other’ elements
to specify any further information -—>
<!ENTITY % n.user " abstract?, affiliation?,
contents?, copyright?,
(isbn | issn)?,
keywords?, language?, lccn?,
location?, mrnumber?, mrclass?, mrreviewer?,
price?, size?, url?, category?, other* ">
<!ENTITY % n.common "key?, annotate?, crossref?,
$n.user; ">
<!-- content model used more than once -->
<!ENTITY % n.InProceedings "author, title, booktitle,
year, editor?,
(volume | number)?,
series?, pages?, address?,
month?, organization?, publisher?,
note?, %n.common;">
<!ENTITY % n.PHDThesis "author, title, school,
year, type?, address?, month?,
note?, %n.common;">
D -=>
<!-- Entries in the BibTeX database -->
<!-- [article] An article from a journal or magazine.
- Required fields: author, title, Jjournal, year.
- Optional fields: volume, number, pages, month, note. -->
<!ELEMENT article (author, title, journal,

year, volume?, number?, pages?,
month?, note?, %n.common;)

86

GAPDoc
>
<!-— [book] A book with an explicit publisher.
- Required fields: author or editor, title, publisher, year.
- Optional fields: volume or number, series, address,
- edition, month, note. ——>
<!ELEMENT book ((author | editor), title,
publisher, year, (volume | number)?,
series?, address?, edition?, month?,
note?, %n.common;)
>
<!-- [booklet] A work that is printed and bound, but without a named

- publisher or sponsoring institution
- Required field: title.
- Optional fields: author, howpublished, address, month, year, note.
<!ELEMENT booklet (author?, title,
howpublished?, address?, month?,
year?, note?, %n.common;)

>
<!-- [conference] The same as INPROCEEDINGS,
- included for Scribe compatibility. -->
<!ELEMENT conference (%n.InProceedings;)
>
<!-- [inbook] A part of a book, which may be a chapter (or section or
- whatever) and/or a range of pages.
- Required fields: author or editor, title, chapter and/or pages,
- publisher, year.
- Optional fields: volume or number, series, type, address,
- edition, month, note. —-—>
<!ELEMENT inbook ((author | editor), title,
((chapter, pages?) | pages),
publisher, year, (volume |
number) ?, series?, type?,
address?, edition?, month?,
note?, %n.common;)
>
<P-=
- > I want to express that the elements a and/or b are legal that is one
- > of them or both must be present in the document instance (see the
- > element content for BibTeX entry ‘InBook’).
- > How do I specify this in my DID?
- Dave Peterson:
- 1in content model: ((a , b?) | b) if order matters
- ((a, b2) | (b, a?)) otherwise
-—>
<!-- [incollection] A part of a book having its own title.

- Required fields: author, title, booktitle, publisher, year.

87

GAPDoc

- Optional fields: editor, volume or number, series, type,
- chapter, pages, address, edition, month, note. -->
<!ELEMENT incollection (author, title,

booktitle, publisher, year,

editor?, (volume | number)?,

series?, type?, chapter?,

pages?, address?, edition?,

month?, note?,

%n.common;)

>
<!-- [inproceedings] An article in a conference proceedings.
- Required fields: author, title, booktitle, year.
- Optional fields: editor, volume or number, series, pages,
- address, month, organization, publisher, note. —-->
<!ELEMENT inproceedings ($n.InProceedings;)
>
<!-- [manual] Technical documentation
- Required field: title.
- Optional fields: author, organization, address,
- edition, month, year, note. -->
<!ELEMENT manual (author?, title,
organization?, address?, edition?,
month?, year?, note?, %n.common;)
>
<!-- [mastersthesis] A Master’s thesis.
- Required fields: author, title, school, year.
- Optional fields: type, address, month, note. -->
<!ELEMENT mastersthesis ($n.PHDThesis;)
>
<!-- [misc] Use this type when nothing else fits.
- Required fields: none.
- Optional fields: author, title, howpublished, month, year, note.
<!ELEMENT misc (author?, title?,
howpublished?, month?, year?, note?,
%n.common;)
>
<!-- [phdthesis] A PhD thesis.
- Required fields: author, title, school, year.
- Optional fields: type, address, month, note. -->
<!ELEMENT phdthesis (%n.PHDThesis;)
>
<!-- [proceedings] The proceedings of a conference.
- Required fields: title, year.
- Optional fields: editor, volume or number, series,
- address, month, organization, publisher, note. -->
<!ELEMENT proceedings (editor?, title, year,

(volume | number)?, series?,

——>

88

GAPDoc

address?, month?, organization?,
publisher?, note?, %n.common;)

>
<!-- [techreport] A report published by a school or other institution,
- usually numbered within a series.
- Required fields: author, title, institution, year.
- Optional fields: type, number, address, month, note. -->
<!ELEMENT techreport (author, title,
institution, year, type?, number?,
address?, month?, note?, %n.common;)
>
<!-- [unpublished] A document having an author and title, but not
- formally published.
- Required fields: author, title, note.
- Optional fields: month, year. -->
<!ELEMENT unpublished (author, title, note,
month?, year?, %n.common;)
>
D
<!-- Fields from the standard bibliography styles -->
<I-=

Below is a description of all fields recognized by the standard
bibliography styles. An entry can also contain other fields, which
are ignored by those styles.

[address] Usually the address of the publisher or other type of
institution For major publishing houses, van~Leunen recommends
omitting the information entirely. For small publishers, on the other
hand, you can help the reader by giving the complete address.

[annote] An annotation It is not used by the standard bibliography
styles, but may be used by others that produce an annotated
bibliography.

[author] The name(s) of the author(s), here *not* in the format
described in the LaTeX book. Contains elements <name> which in turn
contains elements <first>, <last> for the first name (or first names,
fully written or as initials, and including middle initials) and

the last name.

[booktitle] Title of a book, part of which is being cited. See the
LaTeX book for how to type titles. For book entries, use the title
field instead.

[chapter] A chapter (or section or whatever) number.

[crossref] The database key of the entry being cross referenced.

[edition] The edition of a book-for example, ‘‘Second’’. This

89

GAPDoc

should be an ordinal, and should have the first letter capitalized, as
shown here; the standard styles convert to lower case when necessary.

[editor] Name(s) of editor(s), typed as indicated in the LaTeX book.
If there is also an author field, then the editor field gives the
editor of the book or collection in which the reference appears.

[howpublished] How something strange has been published. The first
word should be capitalized.

[institution] The sponsoring institution of a technical report.

[journal] A journal name. Abbreviations are provided for many
journals; see the Local Guide.

[key] Used for alphabetizing, cross referencing, and creating a label
when the ‘‘author’’ information (described in Section [ref:] is
missing. This field should not be confused with the key that appears
in the \cite command and at the beginning of the database entry.

[month] The month in which the work was published or, for an
unpublished work, in which it was written. You should use the
standard three-letter abbreviation, as described in Appendix B.1.3 of
the LaTeX book.

[note] Any additional information that can help the reader. The first
word should be capitalized.

[number] The number of a journal, magazine, technical report, or of a
work in a series. An issue of a journal or magazine is usually
identified by its volume and number; the organization that issues a
technical report usually gives it a number; and sometimes books are
given numbers in a named series.

[organization] The organization that sponsors a conference or that
publishes a manual.

[pages] One or more page numbers or range of numbers, such as 42-111
or 7,41,73-97 or 43+ (the '+’ in this last example indicates pages
following that don’t form a simple range). To make it easier to
maintain Scribe-compatible databases, the standard styles convert a
single dash (as in 7-33) to the double dash used in TeX to denote
number ranges (as in 7-33). Here, we suggest to use the entity
– for a dash in page ranges.

[publisher] The publisher’s name.

[school] The name of the school where a thesis was written.

[series] The name of a series or set of books. When citing an entire
book, the the title field gives its title and an optional series field

gives the name of a series or multi-volume set in which the book is
published.

90

GAPDoc

- [title] The work’s title. For mathematical formulae use the <M> or
- <Math> elements explained below (and LaTeX code in the content, without
- surrounding ’$’).

- [type] The type of a technical report-for example, ‘‘Research
- Note''.

- [volume] The volume of a journal or multivolume book.

- [year] The year of publication or, for an unpublished work, the year

- it was written. Generally it should consist of four numerals, such as
- 1984, although the standard styles can handle any year whose last four
- nonpunctuation characters are numerals, such as ‘(about 1984)'.

<!-- Here is the main extension compared to the original BibXML definition
from which is DID is derived: We want to allow more markup in some
elements such that we can use the bibliography for high quality
output in other formats than LaTeX.

- <M> and <Math>, mathematical formulae: Specify LaTeX code for "simple"
formulae as content of <M> elements; "simple" means that they can be
translated to a fairly readable ASCII representation as explained in
the GAPDoc documentation on "<M>".

More complicated formulae are given as content of <Math> elements.
(Think about an <Alt> alternative for text or HIML representations.)

- <URL>: use these elements to specify URLs, they can be properly
converted to links if possible in an output format (in that case
the Text attribute is used for the visible text).

- <value key="..."/>: substituted by the value-attribute specified
in a <string key="..." value="..."/> element. Can be used anywhere,
not only for complete fields as in BibTeX.

- <C> protect case changes: should be used instead of {}’s which are
used in BibTeX title fields to protect the case of letters from
changes.

- <Alt Only="...">, <Alt Not="...">, alternatives for different
output formats: Use this to specify alternatives, the GAPDoc
utilities will do some special handling for "Text", "HIML",
and "BibTeX" as output type.

- <Wrap Name="...">, generic wrapper for other markup:

Use this for any other type of markup you are interested in. The

GAPDoc utilities will ignore the markup, but provide a hook

to do install handler functions for them.
-—>
<!ELEMENT M (#PCDATA | Alt)* > <!-- math with simple text

representation, in LaTeX -->

<!ELEMENT Math (#PCDATA | Alt)* > <!-- other math in LaTeX -->

91

GAPDoc

<!ELEMENT URL (#PCDATA | Alt | Link | LinkText)* > <!-— an URL -->
<!ATTLIST URL Text CDATA #IMPLIED> <!-- text to be printed
(default is content) -->
<!ELEMENT value EMPTY > <!-- placeholder for value given -—>
<!ATTLIST value key CDATA #REQUIRED > <!-- .. by key, defined in a string
element -->
<!ELEMENT C (#PCDATA | value | Alt |
M | Math | Wrap | URL)* > <!-- protect from case changes -->
<!ELEMENT Alt (#PCDATA | value | C | Alt |
M | Math | Wrap | URL)* > <!-- specify alternatives for
various types of output -->
<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED > <!-- specify output types in comma and
whitespace separated list (use exactly one of Only or Not) -->
<!ENTITY withMURL " (#PCDATA | value | M | Math | Wrap | URL | C | Alt)*" >
<!ELEMENT Wrap $withMURL; > <!-- a generic wrapper -->
<!ATTLIST Wrap Name CDATA #REQUIRED > <!-- needs a ’'Name’ attribute -->
<!ELEMENT address $withMURL; >
<!-- here we don’t want the complicated definition from the LaTeX book,
use markup for first/last name(s): a <name> element for each
author which contains <first> (optional), <last> elements: -->
<!ELEMENT author (name) * >
<!ELEMENT name (first?, last) >
<!ELEMENT first (#PCDATA) >
<!ELEMENT last (#PCDATA) >
<!ELEMENT booktitle $withMURL; >
<!ELEMENT chapter $withMURL; >
<!ELEMENT edition $withMURL;
<!-- same as for author field --—>
<!ELEMENT editor (name) * >
<!ELEMENT howpublished $withMURL; >
<!ELEMENT institution $withMURL; >
<!ELEMENT journal $withMURL; >
<!ELEMENT month $withMURL; >
<!ELEMENT note $withMURL; >
<!ELEMENT number $withMURL; >
<!ELEMENT organization $withMURL; >
<!ELEMENT pages $withMURL; >
<!ELEMENT publisher $withMURL; >
<!ELEMENT school $withMURL; >
<!ELEMENT series $withMURL; >
<!ELEMENT title $withMURL; >
<!ELEMENT type SwithMURL; >
<!ELEMENT volume $withMURL; >
<!ELEMENT year (#PCDATA) >
<!-- These were not listed in the documentation for entry content, but

- appeared in the list of fields in the BibTeX documentation -->

92

GAPDoc
<!ELEMENT annotate $withMURL; >
<!ELEMENT crossref $withMURL; >
<!ELEMENT key (#PCDATA) >
D —-—=>

<!-- Other popular fields
- From: http://www.ecst.csuchico.edu/" jacobsd/bib/formats/bibtex.html
- BibTeX is extremely popular, and many people have used it to store
- information. Here is a list of some of the more common fields:

affiliation] The authors affiliation.
abstract] An abstract of the work.
contents] A Table of Contents
copyright] Copyright information.
ISBN] The International Standard Book Number.
ISSN] The International Standard Serial Number.
- Used to identify a journal.
- [keywords] Key words used for searching or possibly for annotation.
- [language] The language the document is in.
- [location] A location associated with the entry,
- such as the city in which a conference took place.
- [LCCN] The Library of Congress Call Number.
- I’ve also seen this as lib-congress.
[mrnumber] The Mathematical Reviews number.
[mrclass] The Mathematical Reviews class.
- [mrreviewer] The Mathematical Reviews reviewer.
[
[
[

[
[
[
[
[
[

price] The price of the document.

size] The physical dimensions of a work.

URL] The WWW Universal Resource Locator that points to the item being

- referenced. This often is used for technical reports to point to the
- ftp site where the postscript source of the report is located.

- When using BibTeX with LaTeX you need
- BibTeX style files to print these data.

-—>

<!ELEMENT abstract $withMURL; >

<!ELEMENT affiliation $withMURL; >

<!ELEMENT contents $withMURL; >

<!ELEMENT copyright $withMURL; >
CDATA) >

<!ELEMENT isbn (
<!ELEMENT issn (
<!ELEMENT keywords
<!ELEMENT language

#P

#PCDATA) >
withMURL; >
withMURL; >

— o o

<!ELEMENT lcen #PCDATA) >

<!ELEMENT location $withMURL; >
<!ELEMENT mrnumber $withMURL; >
<!ELEMENT mrclass $withMURL; >
<!ELEMENT mrreviewer $withMURL; >
<!ELEMENT price $withMURL; >
<!ELEMENT size $withMURL; >

93

GAPDoc

<!ELEMENT url $withMURL; >

<!-- Added by Zeger W. Hendrikse

- [category] Category of this bibitem
-=>
<!ELEMENT category $withMURL; >

<!-- A container element [other] for any further information, a description
- of the type of data must be given in the attribute ’'type’

-——>

<!ELEMENT other $withMURL; >

<!ATTLIST other
type CDATA #REQUIRED >

<=
<!-- Predefined/reserved character entities -->

<!ENTITY amp "&#38; ">
<IENTITY 1t "&#60; ">
<IENTITY gt "ek62; ">
<!ENTITY apos "'">
<!ENTITY quot """>

<!-- Some more generally useful entities -->
<!ENTITY nbsp " ">

<!ENTITY copyright "©">

<!ENTITY ndash "–">

<!-- End of BibXMLext dtd -->

94

References

[GAPO6] The GAP Group, Aachen, St AndrewssAP — Groups, Algorithms, and Programming,
Version 4.4.92006.http://www.gap-system.org. 8

[Lam85] L. Lamport. IAIEX: A Document Preparation SysterAddison-Wesley, 1985.22, 35, 63,
64

95

http://www.gap-system.org

Index

A, 33
Abstract, 21
Acknowledgements, 22

AddHandlerBuildRecBibXMLEntry, 70

AddPageNumbersToSix, 49

AddParagraphNumbersGapDocTree, 46

AddRootParseTree, 45
<Align>, 32

Alt, 36

ANSI_COLORS,55
Appendix, 24
AppendTol, 61
ApplyToNodesParseTree, 45
Arg, 33

Attr, 27

Author, 21

B, 34
Base64String, 57
Bibliography, 22
Body, 23

Book, 19

Br, 37
Button, 34

c, 33
CAPITALLETTERS, 54
<Caption>, 32
Chapter, 23
CheckAndCleanGapDocTree, 46
Cite, 29

Code, 33

Colophon, 22
ComposedDocument, 39
ComposedXMLString, 39
Copyright, 21

Address, 21
Date, 21
Description, 25

96

DIGITS, 54
DigitsNumber, 57
Display, 35
DisplayXMLStructure, 45

E, 32

Email, 30

Emph, 32

Encode, 59
EntitySubstitution, 45
Enum, 31

Example, 34

F, 33

Fam, 28

File, 33
FileString, 62
Filt, 27
FormatParagraph, 55
Func, 25

<#GAPDoc>, 38
GAPDoOC2HTML, 50
GAPDOC2HTMLPrintHTMLFiles, 52
GAPDoc2LaTeX, 47
GAPDoc2Text, 48
GAPDoc2TextPrintTextFiles, 48
GetTextXMLTree, 46

Heading, 24
HEXDIGITS, 54
Homepage, 31
<HorLine>, 32

Ignore, 37
<#Include>, 38
Index, 30
InfoBibTools, 65
InfoClass, 28
InfoGAPDoc, 52

InfoXMLParser, 46
IntListUnicodeString, 58
IsUnicodeCharacter, 58
IsUnicodeString, 58
Item, 31
<Item> in <Table>, 32

K, 33
Keyword, 33

Label, 29
LaTeXUnicodeTable, 59
LETTERS, 54

List, 31

Listing, 34

Log, 34
LowercaseUnicodeString, 59
LowercaseUnicodeTable, 59

M, 35

MakeGAPDocDoc, 43
ManSection, 25
ManualExamples, 52
ManualExamplesXMLTree, 52
Mark, 31

Math, 35

Meth, 26

NormalizedNameAndKey, 64
NormalizeNameAndKey, 64
NrCharsUTF8String, 60
NumberDigits, 57

Oper, 26
OriginalPositionDocument, 40

p, 37

Package, 34

Page, 61

PageDisplay, 61

Par, 37

ParseBibFiles, 63
ParseBibXMLextFiles, 68
ParseBibXMLextString, 68
ParseTreeXMLFile, 43
ParseTreeXMLString, 43
PositionMatchingDelimiter, 57
PrintFormattedString, 61

GAPDoc

97

PrintSixFile, 49
PrintTol, 61
Prop, 27

0,33
Quoted, 33

ReadTestExamplesString, 53
RecBibXMLEntry, 69

Ref, 28
RemoveRootParseTree, 45
RepeatedString, 56
Returns, 25

<Row>, 32

Section, 24
SetGAPDocTextTheme, 49
SimplifiedUnicodeString, 59
SimplifiedUnicodeTable, 59
SMALLLETTERS, 54
StringBase64, 57
StringBibAsxXMLext, 67
StringBibXMLEntry, 71
StringFile, 62
StringPrint, 61
StringView, 61
StringXMLElement, 44
StripBeginEnd, 56
StripEscapeSequences, 56
Subsection, 24
SubstitutionSublist, 56
Subtitle, 20

Table, 32
TableOfContents, 22
TemplateBibXML, 72
TestExamplesString, 53
TestManualExamples, 53
TextAttr, 54
TheIndex, 23

Title, 19
TitleComment, 21
TitlePage, 19

UChar, 58

Unicode, 58
UppercaseUnicodeString, 59
URL, 30

GAPDoc

Var, 27
Version, 20

WHITESPACE, 54
WidthUTF8String, 60
WordsString, 57
WriteBibFile, 64
WriteBibXMLextFile, 68

XML, 8
XMLElements, 46

98

