References

[CS] Catino, F. and Spinelli, E. Upper Lie codimension subgroups, To appear

[Du] Du, X. The centers of radical ring, Canad. Math. Bull., 35, (1992), p. 174--179

[HB] Huppert, B. and Blackburn, N. Finite groups. II, Springer-Verlag, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 242, Berlin, (1982), p. xiii+531
(AMD, 44)

[LR86] Levin, F. and Rosenberger, G. Lie metabelian group rings in , Group and semigroup rings (Johannesburg, 1985), North-Holland, Amsterdam, (1986), p. 153--161

[PPS73] Passi, I. B. S. and Passman, D. S. and Sehgal, S. K. Lie solvable group rings, Canad. J. Math., 25, (1973), p. 748--757

[Ros97] Rossmanith, R. Centre-by-metabelian group algebras, Friedrich-Schiller-Universit\accent127at Jena, (1997)

[Ros00] Rossmanith, R. Lie centre-by-metabelian group algebras in even characteristic. I, II, Israel J. Math., 115, (2000), p. 51--75, 77--99

[Ross] Rossmanith, R. Lie centre-by-metabelian group algebras over commutative rings, J. Algebra, 251 (2), (2002), p. 503--508

[Shalev91] Shalev, A. Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units, J. London Math. Soc., 43, (1991), p. 23--36

[Sims] Sims, C. C. Computation with finitely presented groups, Cambridge University Press, Encyclopedia of Mathematics and its Applications, 48, Cambridge, (1994), p. xiii+604

[Wursthorn] Wursthorn, M. Isomorphism of modular group algebras: an algorithm and its application to groups of order $2^6$, J. Symbolic Comp., 15, (1993), p. 211--227




generated by GAPDoc2HTML