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The purpose of this document is to explain the implementation of cohomology prod-
ucts in the CRIME package for GAP. In this document, the composition g o f of two
functions f and g is the function obtained by applying f first and then g. The symbol O
is used in diagrams to indicate that a polygon either commutes or anticommutes.

Let G be a finite p-group for some prime p and let k = F,,. We write k for the trivial
kG-module. We assume that we can calculate a kG-projective resolution P, of k. In
other words, for n as large as we need, we can compute the integers {b,, : 0 < m < n}
the maps {0, : 1 < m < nj}and the map e such that

on 01

Pn Pn—1 e P] PO < k (1)
is exact where P,, = (kG)®"™. Later, we will assume also that P, is minimal, but this

assumption isn’t needed at this point.

1 Cohomology Products

The following construction is taken from [2]. We begin with two cocycles f : P; — k and
g : P; — k. This means that f 0 0;11 = g 0 9;;1 = 0. We want to compute the cup product
fg : Pprj — k.
We first convert f into an chain map, resulting in the following commutative dia-
gram.
d Om—1

Oit2 Oit1

Pn——>Pmn 1 —Pno e Pii2 Pii1 P; )
ifm iﬂn] lfmZ \Lfi+2 J/fi.+1 \Lf\
Pm—i 5 —=Pmi1;—=Pmi2 E Pr—5—=Pi——=Po—>k 0

This is done as follows.

1. Define f; such that € o f; = f. This is possible by projectivity of P;.



2. Define f;;; such that 0; o fi;; = f; 0 01;1. This is possible by projectivity of P,
since
im (f; 0 0341) < ker (e) =im (94)

as € o (f;00i11) = fodiy1 = 0 since f is a cocycle.

3. Define fi, such that 9, o fi;, = fi4q 0 9i;,. This is possible by projectivity of Py,
since
im (fi1q 0 9442) < ker (91) = im (92)

as 07 0 (fi1100442) =fi 004410044, =0.

4. Define f,, for m > i + 2 by recursion such that 0., ; o f;, = f;;,_1 0 9. This is
possible by projectivity of P, since

im (fm—l © am) < ker (am—i—l) =im (am—i)
as am—i—l o (fm—1 © am) = fm—Z © am—] © aTn = 0.

Then the product fg is calculated as g o fiyj. The process above is used to compute
the multiplication table used by the CohomologyRing command and is used to find
generators by the CohomologyGenerators command.

2 The Yoneda Cocomplex

My understanding of the purpose of the Yoneda Cocomplex is the following. The defi-
nition of the Massey product below requires a cocomplex having an associative product.
The product defined above, however, is defined only for f and g cocycles in Hom (P, k).
The Yoneda cocomplex Y, on the other hand, has the same cohomology as Hom (P., k),
but has an associative product defined for all cochains, namely composition. Moreover,
we will show that via the isomorphism @ : H* (G, k) — H* (Y), composition in Y agrees

with the product defined in Section 1 up to the factor (—1 )desfde8 9 1 other words,
® (fg) = (—1)*B™E9D (g) 0 @ (f).
The following construction comes from [1].

Definition 1. For i > 0 define

Yt =] [ Homyg (P, Prni).

m>i

Then an element f € Y'is a collection of kG-homomorphisms {f, : Py — Pm_i:m > i} as in
the following diagram.



On

P Pr1 e p o, p Ol p . Py 2 p
ifn lfnq lfm lfmq J{fm—z lfwl lfi

Pnfi H‘anii Pﬂ*i*] “ e P'm.fi 61“71-' Pmﬁiilai] meifz PP P1 a] PO
3)

Diagram (3) is not required to commute.

Definition 2. Y = @ Y' is called the Yoneda cocomplex of P.. We write deg (f) = i for
>0

fe Y. Let f ={f,: m>1} € Y- and define
0: Y — Y
fro dfpnr00n— (1) 0 iofpim>1}.
We observe that cocycles in Y are those elements f for which (3) commutes if deg f is
even and anticommutes if deg f is odd.
Lemma 3. Y with differentiation 9 is a cocomplex, that is, 02=0.

Proof. Let f € Y. We will show that 3*f = 0 at the point P, in 3) form > i+ 2 =
deg (9%f). Follow along in the picture.

(3 (0f),, = (3f),_,00m— (1) 0 1 10(3f),,
- (fm_z 0 Ot — (—1) Byt o fm_1) 0 Om
- (_1 )i+1 amfif1 o (fmf1 o am_ (_1)iamfi o fm)

1:m—2 o am—1 o am - am—i—] o am—i o fm

=0

Theorem 4. The cohomology groups of Y are H* (G, k).
Proof. We will define a group isomorphism @ : H* (G, k) — H(Y).

1. Let f : Py — k be a cocycle in Horn,i<G (Ps, k), so f o 0;47 = 0. Define @ (f) =
{fm:m > 1} € Y'as follows. The element @ (f), together with f, is pictured in the
following diagram.

) Om_1 Oit2 Oi+1

Pm——>Pm P2 e Piyo —=Pip1 ——P;
ifm iﬂn] lfmz lf‘wz J/fiﬁ lﬂ\&
P . Pm—i1 — Pm_i2 e P, % P, -y Po——>k 0

(4)



(a) Define f; such that € o f; = f. This is possible by projectivity of P;.
(b) Define f;,; such that 9; o f;; = (—1)"f; 0 3;,1. This is possible by projectivity
of Pi,1 since
im ((—1 ) fi o ai+1) < ker (e) =im (9,)

as € o ((—Uifio aH]) — (=1)'fo0dy = 0.

(c) Define f;,;such that 9,0f;,, = (—1 )i fi;100442. Thisis possible by projectivity
of Pi > since
im ((—1)" i1 004;2) < ker (31) = im (3)

as 070 ((—1 ) i1 0 ai+2) =fi00i410042 =0.

(d) Define f,, for m > i+ 2 by recursion such that 0,,,_i o 1, = (—1 )ifm,1 0 Om.
This is possible by projectivity of P, since

im ((—1) 1 09p) < Ker (A1) = im (9 4)

as dy_i_1 0 ((—1 ) o am) = 20 Om1 0O = 0.

This completes the definition of ®. The maps {f,, : m > i} defined in Steps 1b-1d
above satisfy .

Om-i0fm = (_] )lfm—1am'
In other words, (0@ (f)), ,; =0 forall m >1i+ 1so that 00 (f) = 0. Thus, @ (f) is
a cocycle by construction.

. We claim than any other choice of maps {f;, : m > i} satisfying the conditions in
la-1d above will be equivalent to {f, : m > i} in H'(Y). More precisely, if f and f’
both satisfy conditions 1a-1d, then will define a map 6 € Y*! such that 06 = f—1".
Write gy = i — 1 form > 1.

am amf 1 amfz a1'.+2

| e Pii2

Pm - mel mez

Om—1 Om—2 Om—3 Oit1 6; 01
gm Im—1 Im-—-2 9m-3 9i+2 gi+1 Ogi

Po

P,

02

Pni—>Pmi1—>Pnio2—>Pn i3 e P,
Om—i 0 0 2 01

m—i—1 m—i—

()

(e) Take 9171 =0.

(f) Since e o f; = e o f{ = f, we have im (g;) < ker (¢) = im (91). Define 6; such
that 97 0 8; = (—1)" gi. This is possible by projectivity of P;. We rewrite the
condition on 0; for future reference as follows.

(00), =0— (~=1)""3,00; = g; (6)
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(g) By (2f), we have
0100;00: = (—1)"g10di1 = 10 Gig

so that
im (git1 — 010 0441) < ker (97) =im (92) .

Define 0;,7 such that
020011 = (—1)" (9111 — 00 di41)
and again, for future reference, we rewrite this as follows.
(00),; = 0:00i11— (=1)""3,00:11 = gis ()
(h) Assume by recursion that we have computed 0., , and 0., 3 such that
Om-1100m2=(—1)"(gm 2— Om 30m 2).
Then dm_i190m-200m1 = (—1)" gm_2 0 dm_1 = Om_i_1 © Gm_1 SO that
im (gm—1 —0m—200m_1) < ker (0y—i1) =im (O ) .
Define 0,,,_; such that
Om-i00m1 = (=1 (gm1 — Om20dm1),
and again, for future reference, we rewrite this as follows.
(08) 1 = 8m200m1 — (1) O 0 Bt = G 8)

This completes the definition of 6. Then 0 satisfies 900 = f — f’ by (6), (7), and (8).

3. Suppose now that f = 0g for some cochain g : Pi_; — k. Write ® (go9d;) =
{gm : m > i}. We will construct 0 such that ® (3g) = 90 for some 0 € Y ! as in the
following diagram.

Om+1 Om Om_1 i1 3
P P P ———Pma e Piy1 Pi Pis
em emfl emfz ei, 6171
Im+1 gm Im—1 9m-2 gi+1 gi O [¢]
ame—] Om—1i Om—i—1 01

(i) Define 0;_; such that € o 8;_; = g. This is possible by projectivity of P;_;.



(j) Since € 0 0;_1 0 0; = g 0 9; = € o g;, we have that
im (g; — 01 00;) < ker(e) =im (0¢).
Thus, by projectivity of P;, we have 6; such that
0100; =(—1)"(gi — 0:100s).

Then .
(66)i =0i100;— (—1)1_] 0100 = gi.

(k) Assume by recursion that we have computed the maps 6., ; and 6, such

that .
Om 200, 1— (_] )l_] Om-i00m 1= Om—1.
Then .
am—i O0m = (_1 )1 Om—-10° am - am—i o em—l o aTn
so that

im (gm — Om—1 0 0y) < ker (0ry—i) = im (Om—i41) -

Define 0,,, such that
Om—i—100m = (_1 )i (gm_ Om_10 am) .

Then _
(ae)m = em—l o a111_ (_])l_] am—i+1 o em = Om-

This completes the definition of 8. Then g = 96 by construction.

4. We will now show that @ is a k-module homomorphism. Let f,g : P; — k be
cocycles and let «,3 € k. Write h = of + 3g. We want to show that ® (h) =
ax® (f) + D (g). But e o hg = € o (afo+ Bgo) = «f + Bg, so that we are in the
situation of Step 2 above. Thus, ® (h) and «® (f) + B (g) are equivalent elements
of Y.

5. By Steps 3 and 4, we have that if f and f’ are equivalent in H* (G, k), then ® (f) and
O (f') are equivalent in H* (Y). This together with 2 shows that ® is a well-defined
k-module homomorphism.

6. Finally, @ is a bijection, having inverse given by

{fn:m>i}— eofy



3 ProductsinY

In this section we define a product Y'®Y! — Y on Y. If f € Yiand g € Y/ then let fg be
element of Y whose component maps are the compositions of the component maps
of f with those of g such that legitimate compositions are obtained, as in the following
diagram.

Pp— Py E P Py e Pi+j+1ai+]> Piis
\Lfn \Lfnl lfm lfm1 lfﬂ—j#—l lfﬂ—j
Pn—i & Pn—i—] e Pm—i Ot Pm—i—] e Pj+1 9 Pj
\Lgni l%i] igmi i9m11 l9j+1 \ng
Pn—i—j E;an—i—j—1 i Pm—i—j k; mei—j—1 e P, % Po

©)
Observe that we have thrown away the maps {f,, : i < m <1i+j — 1}. Isuppose that the
natural symbol for the object in (9) would be gof, to emphasize the fact that we’re talking
about the component-wise composition of two elements of Y and not a cohomology
product.

Observation 5. 3 (gof) = go df + (—1)*8"3g o f.

Proof. Write i = deg (f) and j = deg (g) as in (9). We will show the claim at the point P,
in(9)form>1i+j+1=deg(0(gof)). Follow along in the picture.

<g o of 4+ (—1 )iag o f)m = gm-i_10° <fm,1 00m — (=) 0y io fm>
+ (=1 (9m-1103mi = (=1) Ot 0 i) © Fm

it+j
am—i—j ©gm—-i© fm

Om—i—10° fm—l ° am - (_])
(0(gof)),

Claim 6. Composition in Y induces via @ an associative binary operation
H'(G,k) ® H (G, k) — H'Y (G, k)

making H* (G, k) into a ring with 1.

4 Relationships among products on H* (G, k)

Letf € H' (G, k) and g € H' (G, k). Consider the following products on H* (G, k).
1. The cup product fg defined in Section 1

7



2. The product induced from composition in Y

(f,0) 2 (O (), @ () > @(g)o®(f) ¥ eo (D (g)od(f))

i+j

3. The Massey 2-fold product (f, g), defined more generally in Section 5 below,

)

(f,9) D (@ (f), D (g)) ¥ (~1)" @ (g) o @ () T

= (—1)'eo (D (g)o®(f)),,

The cup product is calculated as g o fiy;, where fi; is as in (2), whereas product 2 is
calculated as g o fi;;, where f;; is as in (4). Comparing (2) and (4) we see that the two
fi’s are the same, the fi,¢’s differ by (—1)', the fi,’s differ by (— ) and in general, the
fitm’s differ by (—1 )'™ Thus, products 1 and 2 differ by (—1 )ij, that is,

O (@ (g)od(f)) =(—1)"fg
so that

@ (fg) = (—1)7 D (g) o D (f)
and therefore

@ (fg) = (—1)V"(f, g).

We observe that product 1 is associative (see [2]), and that product 2 is also associative,
consisting of composition of functions. The Massey product, however, is not associative
in general.

5 Massey Products

The idea of the Massey product is to extend the cohomology product to an n-fold prod-
uct for n > 2. The following definition is adapted from [3].

Definition 7. For k > 2 let f(1 £ %) be cocycles in Y. The Massey k-fold product
(f, £ £ s defined provided that for each pair (i,j) with 1 < i < j < k other

than (1,%) the lower-degree product (f®,f0+1), .. f0)) is defined and vanishes as an ele-
ment of H* (Y). That is, if for each qualzfymg i,7) there exzsts u” € Y such that duV =
(fO, 010 0. In this situation, the value of (! .., 1) is defined to be

k—1
§ ut+1 Ko uht
t=1

where the symbols ' and wW<* are taken to be f1) and £0) respectively and @ = (—1)98™

u.

8



Observe that in the case k = 2 the condition on (i,j) is vacuously satisfied, so that
(f,g) = g o f. Traditionally, one organizes the information in Definition 7 into the array
like

£ 12 13
£2) 23 24
£3) 34
£4)

and traces the top row with one hand while tracing the rightmost column with the other
hand as t runs from 1 to k — 1. In the example shown above we have

(F0 £2) §3) £@0) — 24 6 1) 413 o uT2 4 £4) o uT3,

Lemma 8. (f!") 2 09 s g cocycle in Y.

The reason for the sign appearing in Definition 7 becomes apparent in the following
proof.

Proof. We begin by making a general observation about Y. Suppose f € Y' and that
g = 00 for some 0 € Y/ as in the following diagram.

P Oitjt+m+1 P
i+Hj+m+1 > Pitj4+m

fijrm firjem

aj+m+]
Pi+m+1 - Pi+m

Jj+m+1 9j+m
Oj+m+1 0j+m

Pm+2 dmi2 Pm+]

Then by Observation 5 we have

(go f)i+j+m+1 Jj+m+1 © Titjrme

= 051m 0 Ojsmp1 © Fisjrmpr — (1) Bimt2 0 O5mp1 © Fijm
= 0j4m © 0j1m+1 0 Figjpmir — (—1 )ji] Om+2 0 Oj4m+1 0 Figjima

— (=1 0j4m © fitjim © Oipjymyr + (=1 )' 05+m © fitjtm © Oijrmr1
= —(=1)"(80(0f)) (—1)'9(80f)

iHj+m+1 + iHj+m+1

so that as elements of H* (Y) we have

0 of=—(—1)"000f. (10)



Now we compute the derivative of (f") (@) . ),

k—1 k—1
d <Z (—1 )(degu”) ut ko u],t) _ <(_1)(degu]'t) W R o ault + autt ko u],t)

t=1

=1
=0
n
Observation 9. The condition du™ = (f1 D £0)) forces
deg (u Z deg () +1—j
and  deg (fV {1, Zdeg )+i—j+1.

Troubling Observation 10. (f!") 2/ £ is not uniquely defined, unless for each (i,3)
the condition duY = (fV 00 £00) is satisfied by exactly one cochain u'.

Suppose that we are given cocycles f(V) {2/ () and we want to compute the
map u for some (i,j) with T <1i < j < k other than (1,k). Assume that recursively, we
have computed all of the maps in the following array.

F N RS R
i) LT i
(G- g1
£0)
The map u'’ will be such that
j—1
ot = (fU fD 0y = 3y o it (11)

t=i

where utt = f) and W = ). Write g for the map on the right-hand side of (11). Write
d =degl(g Zdeg N4i—j+1.

The relevant maps are all pictured below.
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Od+2 Od+1 GEY
Pay2 Pap Pa Pa
i w | iy
9d+2 9d+1 O 9d
Py % P y Po < k

We assume now that P, is minimal. In other words, we assume that 0,, (P) <
Rad (Py,—1) for all m > 1. This implies that of = 0 for any cochain f, that is, we have
0i41 o f = 0 for any kG-homomorphism f : P; — k.

The map u' € Y4 is constructed as follows.

1. We take ujy , = 0.

2. The assumption that (f {0V f0)) = g vanishes as an element of HY (Y) tells
us that € o g4 vanishes as an element of H4 (G, k). But since P, is minimal, this
means that e o g4 is actually the zero map. Then by projectivity of P4, there exists
uy such that 3; o uly) = (—1)% g4. Observe that this means

(Qub)  =0—(=1)*""3;0uy = gqa.

3. The map g is a cocycle by Lemma 8. This means that the rectangles in (??) either
commute or anticommute, depending on whether d is even or odd. Thus,

070 <9d+1 —uyo 5d+1) =910gap1 — (—1)%ga0dap1 =0

so that N
im (gd+] —uy o adH) < ker(07) =im (0,).

Thus, there exists 1y, ; such that
d0uy,, = (-1)¢ <9d+1 —uy o ad+1> .
Observe that this means

. d—1
(OuY) 1,y =ud 0dan — (1) d20ug; = gasr.

11



4. Assume by recursion that we have constructed that mapsu®’ ,and u') , such that
Om_arour) , = (=11 <9m72 —ul ;o am72> :
Thus

a'm—d—l o <gm—l - ui{ifz ° am—]) - a'm—d—l Ogm—-1— (_1 )dgm—z ° am—l =0

so that 3
im (g1 — Ul 09 1) < ker (A q 1) =im (9 a).

Thus, there exists 1’ , such that
Om-a0° uiﬁjq = (-1 )d (gmf1 - u;’i_z o amf1> .
Observe that this means

(QuY)  =ul ,00m g — (—1) T dnqoull ;= gm.
This completes the construction of u'J. By construction, we have d (u"/) = g.

Finally, observe that in the last step in the calculation of (f!") 2. . () which
is actually the first step, as this is a recursive process, it is only necessary to calculate
u"*1 but none of the maps u"™ for 2 < m < k — 2, and none of the maps u™* for
2 <m < k— 1. In effect, the sum

k—1 k—2
§ utthk oyt = § utt ko ult 4 £k o 1k
t=1 t=1

appearing in Definition 7 is calculated as

k—2 !
z t+1,k 1.t (k) 1,k—1
udegut“‘k Ou’degu"“‘k+degu1‘t + deg f(¥) © udegf(k)eregu‘»k*"
t=1
But ué'g; fft+1,k = 0 by construction (see Step 1 above), so the sum reduces to a single

term. This is not the case with the intermediate maps u" withj —1 <k — 2.
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