
GRAPE
A Package for GAP

by

Leonard H. Soicher

School of Mathematical Sciences
Queen Mary University of London

Contents

1 Grape 5

1.1 Installing the GRAPE Package . . . 5

1.2 Loading GRAPE 6

1.3 The structure of a graph in GRAPE . 7

1.4 Examples of the use of GRAPE . . . 7

2 Functions to construct and modify
graphs 9

2.1 Graph 9

2.2 EdgeOrbitsGraph 10

2.3 NullGraph 10

2.4 CompleteGraph 11

2.5 JohnsonGraph 11

2.6 CayleyGraph 12

2.7 AddEdgeOrbit 12

2.8 RemoveEdgeOrbit 13

2.9 AssignVertexNames 13

3 Functions to inspect graphs, vertices and
edges 15

3.1 IsGraph 15

3.2 OrderGraph 15

3.3 IsVertex 15

3.4 VertexName 15

3.5 VertexNames 16

3.6 Vertices 16

3.7 VertexDegree 16

3.8 VertexDegrees 16

3.9 IsLoopy 16

3.10 IsSimpleGraph 17

3.11 Adjacency 17

3.12 IsEdge 17

3.13 DirectedEdges 17

3.14 UndirectedEdges 18

3.15 Distance 18

3.16 Diameter 18

3.17 Girth 19

3.18 IsConnectedGraph 19

3.19 IsBipartite 19

3.20 IsNullGraph 20

3.21 IsCompleteGraph 20

4 Functions to determine regularity
properties of graphs 21

4.1 IsRegularGraph 21

4.2 LocalParameters 21

4.3 GlobalParameters 22

4.4 IsDistanceRegular 22

4.5 CollapsedAdjacencyMat 22

4.6 OrbitalGraphColadjMats 23

4.7 VertexTransitiveDRGs 23

5 Some special vertex subsets of a graph 25

5.1 ConnectedComponent 25

5.2 ConnectedComponents 25

5.3 Bicomponents 25

Contents 3

5.4 DistanceSet 26

5.5 Layers 26

5.6 IndependentSet 26

6 Functions to construct new graphs from
old 27

6.1 InducedSubgraph 27

6.2 DistanceSetInduced 27

6.3 DistanceGraph 28

6.4 ComplementGraph 28

6.5 PointGraph 29

6.6 EdgeGraph 29

6.7 SwitchedGraph 30

6.8 UnderlyingGraph 30

6.9 QuotientGraph 31

6.10 BipartiteDouble 31

6.11 GeodesicsGraph 32

6.12 CollapsedIndependentOrbitsGraph . . 32

6.13 CollapsedCompleteOrbitsGraph . . . 33

6.14 NewGroupGraph 34

7 Vertex-Colouring and Complete
Subgraphs 35

7.1 VertexColouring 35

7.2 CompleteSubgraphs 35

7.3 CompleteSubgraphsOfGivenSize . . 36

8 Automorphism groups and isomorphism
testing for graphs 38

8.1 Graphs with colour-classes 38

8.2 AutGroupGraph 38

8.3 GraphIsomorphism 39

8.4 IsIsomorphicGraph 40

8.5 GraphIsomorphismClassRepresentatives 41

9 Partial Linear Spaces 42

9.1 PartialLinearSpaces 42

9.2 A research application of
PartialLinearSpaces 43

Bibliography 46

Index 47

1 Grape

This manual describes the GRAPE (Version 4.6.1) package for computing with graphs and groups.

GRAPE is primarily designed for the construction and analysis of finite graphs related to groups, designs, and geome-
tries. Special emphasis is placed on the determination of regularity properties and subgraph structure. The GRAPE
philosophy is that a graph gamma always comes together with a known subgroup G of the automorphism group of
gamma, and that G is used to reduce the storage and CPU-time requirements for calculations with gamma (see [Soi93]
and [Soi04]). Of course G may be the trivial group, and in this case GRAPE algorithms may perform more slowly
than strictly combinatorial algorithms (although this degradation in performance is hopefully never more than a fixed
constant factor).

Most GRAPE functions are written entirely in the GAP language. However, the GRAPE functions Automorphis-
mGroup, AutGroupGraph, IsIsomorphicGraph, GraphIsomorphismClassRepresentatives, GraphIsomor-
phism and PartialLinearSpaces make direct or indirect use of B.D. McKay’s nauty (Version 2.2 final) pack-
age [McK90], via a GRAPE interface. These functions can only be used on a fully installed version of GRAPE.
Installation of GRAPE is described in its README file and in its manual section 1.1.

Except for the nauty package included with GRAPE, the function SmallestImageSet by Steve Linton, and the new
nauty interface by Alexander Hulpke, the GRAPE package was designed and written by Leonard H. Soicher, School
of Mathematical Sciences, Queen Mary, University of London. Except for the nauty package, GRAPE is licensed
under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version. For details, see

http://www.gnu.org/licenses/gpl.html . Further licensing and copyright information for GRAPE is
contained in its COPYING file.

If you use GRAPE to solve a problem then please send a short email about it to L.H.Soicher@qmul.ac.uk, and
reference the GRAPE package as follows:

L.H. Soicher, The GRAPE package for GAP, Version 4.6.1, 2012,

http://www.maths.qmul.ac.uk/~leonard/grape/ .

If your work made use of a function depending on the nauty package then you should also reference nauty [McK90].

The development of GRAPE was partially supported by a European Union HCM grant in “Computational Group
Theory”.

1.1 Installing the GRAPE Package

The GAP 4.5 distribution includes the GRAPE package, which now includes a 32-bit nauty/dreadnaut binary for
Windows (XP and later versions). Thus, GRAPE normally requires no further installation for Windows users of
GAP 4.5.

You do not need to download and unpack an archive for GRAPE unless you want to install the package separately
from your main GAP installation or are installing an upgrade of GRAPE to an existing installation of GAP (see the
main GAP reference section “reference:installing a gap package”). If you do need to download GRAPE, you can find
archive files for the package in various formats at

6 Chapter 1. Grape

http://www.gap-system.org/Packages/grape.html , and then your archive file of choice should be
downloaded and unpacked in the pkg subdirectory of an appropriate GAP root directory (see the main GAP reference
section “reference:gap root directories”).

Unless you are running GRAPE under Windows (XP or later), you will normally need to perform compilation of
B.D. McKay’s nauty/dreadnaut programs included with GRAPE, and in a Unix environment, you should proceed as
follows. After installing GAP, go to the GRAPE home directory (usually the directory pkg/grape of the GAP home
directory), and run ./configure path, where path is the path of the GAP home directory. So for example, if you
install GRAPE in the pkg directory of the GAP home directory, run

./configure ../..

This will fetch the name of the architecture for which GAP has been most recently configured, and create a Makefile.
Now run

make

to create the nauty/dreadnaut binary and to put it in the appropriate place. This configuration/make process for GRAPE
only works for the last architecture for which GAP was configured. Therefore, you should always follow the above
procedure to install the nauty/dreadnaut binary immediately after compiling GAP for a given configuration, say for a
different architecture on a common file system. However, if you want to add GRAPE later, you can just run ./con-
figure again in the GAP home directory for the architecture, before performing the GRAPE configure/make process
to install the nauty/dreadnaut binary for that architecture.

You should now test GRAPE and the interface to nauty on each architecture on which you have installed GRAPE.
Start up GAP and at the prompt type

LoadPackage("grape");

On-line documentation for GRAPE should be available by typing

?GRAPE

The command

IsIsomorphicGraph(JohnsonGraph(7,3), JohnsonGraph(7,4));

should return true, and

Size(AutGroupGraph(JohnsonGraph(4,2)));

should be 48.

Both dvi and pdf versions of the GRAPE manual are available (as manual.dvi and manual.pdf respectively) in the
doc directory of the home directory of GRAPE.

If you install GRAPE, then please tell L.H.Soicher@qmul.ac.uk, where you should also send any comments or
bug reports.

1.2 Loading GRAPE

Before using GRAPE you must load the package within GAP by calling the statement

gap> LoadPackage("grape");
true

Section 4. Examples of the use of GRAPE 7

1.3 The structure of a graph in GRAPE

In general GRAPE deals with finite directed graphs which may have loops but have no multiple edges. However,
many GRAPE functions only work for simple graphs (i.e. no loops, and whenever [x, y] is an edge then so is [y, x]),
but these functions will check if an input graph is simple.

In GRAPE, a graph gamma is stored as a record, with mandatory components isGraph, order, group, schreierVec-
tor, representatives, and adjacencies. Usually, the user need not be aware of this record structure, and is
strongly advised only to use GRAPE functions to construct and modify graphs.

The order component contains the number of vertices of gamma. The vertices of gamma are always 1,2,...,gamma.order,
but they may also be given names, either by a user (using AssignVertexNames) or by a function constructing a graph
(e.g. InducedSubgraph, BipartiteDouble, QuotientGraph). The names component, if present, records these
names, with gamma.names[i] the name of vertex i. If the names component is not present (the user may, for exam-
ple, choose to unbind it), then the names are taken to be 1,2,...,gamma.order. The group component records the GAP
permutation group associated with gamma (this group must be a subgroup of the automorphism group of gamma). The
representatives component records a set of orbit representatives for the action of gamma.group on the vertices
of gamma, with gamma.adjacencies[i] being the set of vertices adjacent to gamma.representatives[i]. The
group and schreierVector components are used to compute the adjacency-set of an arbitrary vertex of gamma
(this is done by the function Adjacency).

The only mandatory component which may change once a graph is initially constructed is adjacencies (when an
edge-orbit of gamma.group is added to, or removed from, gamma). A graph record may also have some of the
optional components isSimple, autGroup, and canonicalLabelling, which record information about that graph.

1.4 Examples of the use of GRAPE

We give here a simple example to illustrate the use of GRAPE. All functions used are described in detail in this
manual. More sophisticated examples of the use of GRAPE can be found in chapter 9, and also in the references
[Cam99], [CSS99], [HL99] and [Soi06].

In the example here, we construct the Petersen graph P, and its edge graph (also called line graph) EP. We compute
the global parameters of EP, and so verify that EP is distance-regular (see [BCN89]).

gap> LoadPackage("grape");
true
gap> P := Graph(SymmetricGroup(5), [[1,2]], OnSets,
> function(x,y) return Intersection(x,y)=[]; end);
rec(isGraph := true, order := 10,
group := Group([(1, 2, 3, 5, 7)(4, 6, 8, 9,10), (2, 4)(6, 9)(7,10)]),
schreierVector := [-1, 1, 1, 2, 1, 1, 1, 1, 2, 2],
adjacencies := [[3, 5, 8]], representatives := [1],
names := [[1, 2], [2, 3], [3, 4], [1, 3], [4, 5], [2, 4],

[1, 5], [3, 5], [1, 4], [2, 5]])
gap> Diameter(P);
2
gap> Girth(P);
5
gap> EP := EdgeGraph(P);
rec(isGraph := true, order := 15,
group := Group([(1, 4, 7, 2, 5)(3, 6, 8, 9,12)(10,13,14,15,11),

(4, 9)(5,11)(6,10)(7, 8)(12,15)(13,14)]),
schreierVector := [-1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2],
adjacencies := [[2, 3, 7, 8]], representatives := [1],
isSimple := true,

8 Chapter 1. Grape

names := [[[1, 2], [3, 4]], [[1, 2], [4, 5]],
[[1, 2], [3, 5]], [[2, 3], [4, 5]], [[2, 3], [1, 5]],
[[2, 3], [1, 4]], [[3, 4], [1, 5]], [[3, 4], [2, 5]],
[[1, 3], [4, 5]], [[1, 3], [2, 4]], [[1, 3], [2, 5]],
[[2, 4], [1, 5]], [[2, 4], [3, 5]], [[3, 5], [1, 4]],
[[1, 4], [2, 5]]])

gap> GlobalParameters(EP);
[[0, 0, 4], [1, 1, 2], [1, 2, 1], [4, 0, 0]]

2
Functions to

construct and
modify graphs

This chapter describes the functions used to construct and modify graphs.

2.1 Graph
1 I Graph(G, L, act, rel)

I Graph(G, L, act, rel, invt)

This is the most general and useful way of constructing a graph in GRAPE.

First suppose that the optional boolean parameter invt is unbound or has value false. Then L should be a list of el-
ements of a set S on which the group G acts, with the action given by the function act. The parameter rel should
be a boolean function defining a G-invariant relation on S (so that for g in G, x, y in S, rel(x, y) if and only if
rel(act(x, g), act(y, g))). Then the function Graph returns a graph gamma which has as vertex-names (an immutable
copy of)

Concatenation(Orbits(G, L, act))

(the concatenation of the distinct orbits of the elements in L under G), and for vertices v, w of gamma, [v, w] is an edge
if and only if

rel(VertexName(gamma, v), VertexName(gamma, w)).

Now if the parameter invt exists and has value true, then it is assumed that L is invariant under G with respect to
action act. Then the function Graph behaves as above, except that the vertex-names of gamma become (an immutable
copy of) L.

The group associated with the graph gamma returned is the image of G acting via act on gamma.names.

For example, suppose you have an n by n adjacency matrix A for a graph X, so that the vertex-set of X is {1, . . . , n}, and
[i, j] is an edge of X if and only if A[i][j] = 1. Suppose also that G ≤ Aut (X) (G may be trivial). Then you can make
a GRAPE graph isomorphic to X via Graph(G, [1..n], OnPoints, function(x,y) return A[x][y]=1;
end, true);

gap> A := [[0,1,0],[1,0,0],[0,0,1]];
[[0, 1, 0], [1, 0, 0], [0, 0, 1]]
gap> G := Group((1,2));
Group([(1,2)])
gap> Graph(G, [1..3], OnPoints,
> function(x,y) return A[x][y]=1; end,
> true);
rec(
isGraph := true,
order := 3,
group := Group([(1,2)]),
schreierVector := [-1, 1, -2],

10 Chapter 2. Functions to construct and modify graphs

adjacencies := [[2], [3]],
representatives := [1, 3],
names := [1, 2, 3])

We now use Graph to construct the Petersen graph.

gap> Petersen := Graph(SymmetricGroup(5), [[1,2]], OnSets,
> function(x,y) return Intersection(x,y)=[]; end);
rec(
isGraph := true,
order := 10,
group := Group([(1, 2, 3, 5, 7)(4, 6, 8, 9,10), (2, 4)(6, 9)(7,10)

]),
schreierVector := [-1, 1, 1, 2, 1, 1, 1, 1, 2, 2],
adjacencies := [[3, 5, 8]],
representatives := [1],
names := [[1, 2], [2, 3], [3, 4], [1, 3], [4, 5], [2, 4],

[1, 5], [3, 5], [1, 4], [2, 5]])

2.2 EdgeOrbitsGraph
1 I EdgeOrbitsGraph(G, edges)

I EdgeOrbitsGraph(G, edges, n)

This is a common way of constructing a graph in GRAPE.

This function returns the (directed) graph with vertex-set {1, . . . , n}, edge-set∪e∈edges eG, and associated (permutation)
group G, which must act naturally on {1, . . . , n}. The parameter edges should be a list of edges (lists of length 2 of
vertices), although a singleton edge will be understood as an edge-list of length 1. The parameter n may be omitted,
in which case n is taken to be the largest point moved by G.

Note that G may be the trivial permutation group (Group(()) in GAP notation), in which case the (directed) edges
of gamma are simply those in the list edges.

gap> EdgeOrbitsGraph(Group((1,3),(1,2)(3,4)), [[1,2],[4,5]], 5);
rec(
isGraph := true,
order := 5,
group := Group([(1,3), (1,2)(3,4)]),
schreierVector := [-1, 2, 1, 2, -2],
adjacencies := [[2, 4, 5], []],
representatives := [1, 5],
isSimple := false)

2.3 NullGraph
1 I NullGraph(G)

I NullGraph(G, n)

This function returns the null graph (graph with no edges) with vertex-set {1, . . . , n}, and associated (permutation)
group G. The parameter n may be omitted, in which case n is taken to be the largest point moved by G.

See also 3.20.1.

Section 5. JohnsonGraph 11

gap> NullGraph(Group((1,2,3)), 4);
rec(
isGraph := true,
order := 4,
group := Group([(1,2,3)]),
schreierVector := [-1, 1, 1, -2],
adjacencies := [[], []],
representatives := [1, 4],
isSimple := true)

2.4 CompleteGraph
1 I CompleteGraph(G)

I CompleteGraph(G, n)
I CompleteGraph(G, n, mustloops)

This function returns the complete graph with vertex-set {1, . . . , n} and associated (permutation) group G. The pa-
rameter n may be omitted, in which case n is taken to be the largest point moved by G. The optional boolean parameter
mustloops determines whether the complete graph has all loops present or no loops (default: false (no loops)).

See also 3.21.1.

gap> CompleteGraph(Group((1,2,3), (1,2)));
rec(
isGraph := true,
order := 3,
group := Group([(1,2,3), (1,2)]),
schreierVector := [-1, 1, 1],
adjacencies := [[2, 3]],
representatives := [1],
isSimple := true)

2.5 JohnsonGraph
1 I JohnsonGraph(n, e)

Let n and e be integers, with n ≥ e ≥ 0. Then this function returns a graph gamma isomorphic to the Johnson graph
J(n, e). The vertices (actually the vertex-names) of gamma are the e-subsets of {1, . . . , n}, with x joined to y if and
only if |x ∩ y| = e − 1. The group associated with gamma is the image of the symmetric group Sn acting on the
e-subsets of {1, . . . , n}.

gap> JohnsonGraph(5,3);
rec(
isGraph := true,
order := 10,
group := Group([(1, 7,10, 6, 3)(2, 8, 4, 9, 5), (4, 7)(5, 8)(6, 9)

]),
schreierVector := [-1, 1, 1, 2, 1, 1, 1, 2, 1, 1],
adjacencies := [[2, 3, 4, 5, 7, 8]],
representatives := [1],
names := [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5],

[1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]],
isSimple := true)

12 Chapter 2. Functions to construct and modify graphs

2.6 CayleyGraph
1 I CayleyGraph(G)

I CayleyGraph(G, gens)
I CayleyGraph(G, gens, undirected)

Given a group G and a generating list gens for G, CayleyGraph(G, gens) returns a Cayley graph for G with
respect to gens. The generating list gens is optional, and if omitted, then gens is taken to be GeneratorsOfGroup(
G). The boolean argument undirected is also optional, and if undirected=true (the default), then the returned graph
is undirected (as if gens was closed under inversion, whether or not it is).

The Cayley graph caygraph which is returned is defined as follows: the vertices (actually the vertex-names) of cay-
graph are the elements of G; if undirected=true (the default) then vertices x, y are joined by an edge if and only if
there is a g in the list gens with y = gx or y = g−1x; if undirected=false then [x, y] is an edge if and only if there is a
g in gens with y = gx.

The permutation group caygraph.group associated with caygraph is the image of G acting in its right regular repre-
sentation.

Note It is not checked whether G is actually generated by gens. However, even if G is not generated by gens, the
function still works as described above (as long as gens is contained in G), but returns a “Cayley graph” which is not
connected.

gap> C:=CayleyGraph(SymmetricGroup(4),[(1,2),(2,3),(3,4)]);
rec(
isGraph := true,
order := 24,
group :=
Group([(1,10,17,19)(2, 9,18,20)(3,12,14,21)(4,11,13,22)(5, 7,16,23)

(6, 8,15,24), (1, 7)(2, 8)(3, 9)(4,10)(5,11)(6,12)(13,15)
(14,16)(17,18)(19,21)(20,22)(23,24)]),

schreierVector := [-1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2,
1, 1, 2, 2, 1, 2],

adjacencies := [[2, 3, 7]],
representatives := [1],
names := [(), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4),

(1,2,3), (1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), (1,3,4,2), (1,3),
(1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4),
(1,4,2,3), (1,4)(2,3)],

isSimple := true)
gap> Girth(C);
4
gap> Diameter(C);
6

2.7 AddEdgeOrbit
1 I AddEdgeOrbit(gamma, e)

I AddEdgeOrbit(gamma, e, H)

This procedure adds the orbit of e under gamma.group to the edge-set of the graph gamma. The parameter e must be
a sequence of length 2 of vertices of gamma. If the optional third parameter H is given then it is assumed that e[2]
has the same orbit under H as it does under the stabilizer in gamma.group of e[1], and this knowledge can speed up
the procedure.

Note that if gamma.group is trivial then this procedure simply adds the single (directed) edge e to gamma.

Section 9. AssignVertexNames 13

See also 2.8.1.

gap> gamma := NullGraph(Group((1,3), (1,2)(3,4)));;
gap> AddEdgeOrbit(gamma, [4,3]);
gap> gamma;
rec(
isGraph := true,
order := 4,
group := Group([(1,3), (1,2)(3,4)]),
schreierVector := [-1, 2, 1, 2],
adjacencies := [[2, 4]],
representatives := [1],
isSimple := true)

gap> GlobalParameters(gamma);
[[0, 0, 2], [1, 0, 1], [2, 0, 0]]

2.8 RemoveEdgeOrbit
1 I RemoveEdgeOrbit(gamma, e)

I RemoveEdgeOrbit(gamma, e, H)

This procedure removes the orbit of e under gamma.group from the edge-set of the graph gamma. The parameter
e must be a sequence of length 2 of vertices of gamma, but if e is not an edge of gamma then this procedure has no
effect. If the optional third parameter H is given then it is assumed that e[2] has the same orbit under H as it does
under the stabilizer in gamma.group of e[1], and this knowledge can speed up the procedure.

See also 2.7.1.

gap> gamma := CompleteGraph(Group((1,3), (1,2)(3,4)));;
gap> RemoveEdgeOrbit(gamma, [1,3]);
gap> gamma;
rec(
isGraph := true,
order := 4,
group := Group([(1,3), (1,2)(3,4)]),
schreierVector := [-1, 2, 1, 2],
adjacencies := [[2, 4]],
representatives := [1],
isSimple := true)

gap> GlobalParameters(gamma);
[[0, 0, 2], [1, 0, 1], [2, 0, 0]]

2.9 AssignVertexNames
1 I AssignVertexNames(gamma, names)

This procedure allows the user to give new names for the vertices of gamma, by specifying a list names (of length
gamma.order) of vertex-names for the vertices of gamma, such that names[i] contains the user’s name for the i-th
vertex of gamma.

An immutable copy of names is assigned to gamma.names.

See also 3.5.1 and 3.4.1.

14 Chapter 2. Functions to construct and modify graphs

gap> gamma := NullGraph(Group(()), 3);
rec(
isGraph := true,
order := 3,
group := Group([()]),
schreierVector := [-1, -2, -3],
adjacencies := [[], [], []],
representatives := [1, 2, 3],
isSimple := true)

gap> AssignVertexNames(gamma, ["a","b","c"]);
gap> gamma;
rec(
isGraph := true,
order := 3,
group := Group([()]),
schreierVector := [-1, -2, -3],
adjacencies := [[], [], []],
representatives := [1, 2, 3],
isSimple := true,
names := ["a", "b", "c"])

3
Functions to

inspect graphs,
vertices and edges

This chapter describes functions to inspect graphs, vertices and edges.

3.1 IsGraph
1 I IsGraph(obj)

This boolean function returns true if and only if obj, which can be an object of arbitrary type, is a graph.

gap> IsGraph(1);
false
gap> IsGraph(JohnsonGraph(3, 2));
true

3.2 OrderGraph
1 I OrderGraph(gamma)

This function returns the number of vertices (the order) of the graph gamma.

gap> OrderGraph(JohnsonGraph(4, 2));
6

3.3 IsVertex
1 I IsVertex(gamma, v)

This boolean function returns true if and only if v is vertex of the graph gamma.

gap> gamma := JohnsonGraph(3, 2);;
gap> IsVertex(gamma, 1);
true
gap> IsVertex(gamma, 4);
false

3.4 VertexName
1 I VertexName(gamma, v)

This function returns (an immutable copy of) the name of vertex v in the graph gamma.

See also 3.5.1 and 2.9.1.

gap> VertexName(JohnsonGraph(4,2), 6);
[3, 4]

16 Chapter 3. Functions to inspect graphs, vertices and edges

3.5 VertexNames
1 I VertexNames(gamma)

This function returns (an immutable copy of) the list of vertex-names for the graph gamma. The i-th element of this
list is the name of vertex i.

See also 3.4.1 and 2.9.1.

gap> VertexNames(JohnsonGraph(4,2));
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

3.6 Vertices
1 I Vertices(gamma)

This function returns the vertex-set {1, . . . , gamma.order} of the graph gamma.

gap> Vertices(JohnsonGraph(4, 2));
[1 .. 6]

3.7 VertexDegree
1 I VertexDegree(gamma, v)

This function returns the (out)degree of the vertex v of the graph gamma.

gap> VertexDegree(JohnsonGraph(3, 2), 1);
2

3.8 VertexDegrees
1 I VertexDegrees(gamma)

This function returns the set of vertex (out)degrees for the graph gamma.

gap> VertexDegrees(JohnsonGraph(4, 2));
[4]

3.9 IsLoopy
1 I IsLoopy(gamma)

This boolean function returns true if and only if the graph gamma has a loop, i.e. an edge of the form [x, x].

gap> IsLoopy(JohnsonGraph(4, 2));
false
gap> IsLoopy(CompleteGraph(Group((1,2,3), (1,2)), 3));
false
gap> IsLoopy(CompleteGraph(Group((1,2,3), (1,2)), 3, true));
true

Section 13. DirectedEdges 17

3.10 IsSimpleGraph
1 I IsSimpleGraph(gamma)

This boolean function returns true if and only if the graph gamma is simple, i.e. has no loops and whenever [x, y] is
an edge then so is [y, x].

gap> IsSimpleGraph(CompleteGraph(Group((1,2,3)), 3));
true
gap> IsSimpleGraph(CompleteGraph(Group((1,2,3)), 3, true));
false

3.11 Adjacency
1 I Adjacency(gamma, v)

This function returns (a copy of) the set of vertices of the graph gamma adjacent to the vertex v of gamma. A vertex
w is adjacent to v if and only if [v, w] is an edge.

gap> Adjacency(JohnsonGraph(4, 2), 1);
[2, 3, 4, 5]
gap> Adjacency(JohnsonGraph(4, 2), 6);
[2, 3, 4, 5]

3.12 IsEdge
1 I IsEdge(gamma, e)

This boolean function returns true if and only if e is an edge of the graph gamma.

gap> IsEdge(JohnsonGraph(4, 2), [1, 2]);
true
gap> IsEdge(JohnsonGraph(4, 2), [1, 6]);
false

3.13 DirectedEdges
1 I DirectedEdges(gamma)

This function returns the set of directed (ordered) edges of the graph gamma.

See also 3.14.1.

gap> gamma := JohnsonGraph(4, 3);
rec(isGraph := true, order := 4, group := Group([(1,4,3,2), (3,4)]),
schreierVector := [-1, 1, 1, 1], adjacencies := [[2, 3, 4]],
representatives := [1],
names := [[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]],
isSimple := true)

gap> DirectedEdges(gamma);
[[1, 2], [1, 3], [1, 4], [2, 1], [2, 3], [2, 4], [3, 1],
[3, 2], [3, 4], [4, 1], [4, 2], [4, 3]]

gap> UndirectedEdges(gamma);
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

18 Chapter 3. Functions to inspect graphs, vertices and edges

3.14 UndirectedEdges
1 I UndirectedEdges(gamma)

This function returns the set of undirected (unordered) edges of gamma, which must be a simple graph.

See also 3.13.1.

gap> gamma := JohnsonGraph(4, 3);
rec(isGraph := true, order := 4, group := Group([(1,4,3,2), (3,4)]),
schreierVector := [-1, 1, 1, 1], adjacencies := [[2, 3, 4]],
representatives := [1],
names := [[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]],
isSimple := true)

gap> DirectedEdges(gamma);
[[1, 2], [1, 3], [1, 4], [2, 1], [2, 3], [2, 4], [3, 1],
[3, 2], [3, 4], [4, 1], [4, 2], [4, 3]]

gap> UndirectedEdges(gamma);
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

3.15 Distance
1 I Distance(gamma, X, Y)

I Distance(gamma, X, Y, G)

This function returns the distance from X to Y in gamma. The parameters X and Y may be vertices or nonempty lists
of vertices. We define the distance d(X, Y) from X to Y to be the minimum length of a (directed) path joining a vertex
of X to a vertex of Y if such a path exists, and −1 otherwise.

The optional parameter G, if present, is assumed to be a subgroup of Aut (gamma) fixing X setwise. Including such a
G can speed up the function.

See also 3.16.1.

gap> Distance(JohnsonGraph(4,2), 1, 6);
2
gap> Distance(JohnsonGraph(4,2), 1, 5);
1
gap> Distance(JohnsonGraph(4,2), [1], [5,6]);
1

3.16 Diameter
1 I Diameter(gamma)

This function returns the diameter of gamma. A diameter of −1 is returned if gamma is not (strongly) connected.
Otherwise, the diameter of gamma is equal to the maximum (directed) distance d(x, y) in gamma (as x and y range
over all the vertices of gamma).

See also 3.15.1.

gap> Diameter(JohnsonGraph(5, 3));
2
gap> Diameter(JohnsonGraph(5, 4));
1

Section 19. IsBipartite 19

3.17 Girth
1 I Girth(gamma)

This function returns the girth of gamma, which must be a simple graph. A girth of −1 is returned if gamma is a
forest. Otherwise the girth is the length of a shortest cycle in gamma.

gap> Girth(JohnsonGraph(4, 2));
3

3.18 IsConnectedGraph
1 I IsConnectedGraph(gamma)

This boolean function returns true if and only if the graph gamma is (strongly) connected, i.e. there is a (directed)
path from x to y for every pair of vertices x, y of gamma.

gap> IsConnectedGraph(JohnsonGraph(4,2));
true
gap> IsConnectedGraph(NullGraph(SymmetricGroup(4)));
false

3.19 IsBipartite
1 I IsBipartite(gamma)

This boolean function returns true if and only if the graph gamma, which must be simple, is bipartite, i.e. if the
vertex-set can be expressed as the disjoint union of two sets, on each of which gamma induces a null graph (these two
sets are called the bicomponents or parts of gamma).

See also 5.3.1 and 6.10.1.

gap> gamma := JohnsonGraph(4,2);
rec(
isGraph := true,
order := 6,
group := Group([(1,4,6,3)(2,5), (2,4)(3,5)]),
schreierVector := [-1, 2, 1, 1, 1, 1],
adjacencies := [[2, 3, 4, 5]],
representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]],
isSimple := true)

gap> IsBipartite(gamma);
false
gap> delta := BipartiteDouble(gamma);
rec(
isGraph := true,
order := 12,
group := Group([(1, 4, 6, 3)(2, 5)(7,10,12, 9)(8,11),

(2, 4)(3, 5)(8,10)(9,11), (1, 7)(2, 8)(3, 9)(4,10)(5,11)
(6,12)]),

schreierVector := [-1, 2, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3],
adjacencies := [[8, 9, 10, 11]],
representatives := [1],
isSimple := true,
names := [[[1, 2], "+"], [[1, 3], "+"], [[1, 4], "+"],

20 Chapter 3. Functions to inspect graphs, vertices and edges

[[2, 3], "+"], [[2, 4], "+"], [[3, 4], "+"],
[[1, 2], "-"], [[1, 3], "-"], [[1, 4], "-"],
[[2, 3], "-"], [[2, 4], "-"], [[3, 4], "-"]])

gap> IsBipartite(delta);
true

3.20 IsNullGraph
1 I IsNullGraph(gamma)

This boolean function returns true if and only if the graph gamma has no edges.

See also 2.3.1.

gap> IsNullGraph(CompleteGraph(Group(()), 3));
false
gap> IsNullGraph(CompleteGraph(Group(()), 1));
true

3.21 IsCompleteGraph
1 I IsCompleteGraph(gamma)

I IsCompleteGraph(gamma, mustloops)

This boolean function returns true if and only if the graph gamma is a complete graph. The optional boolean param-
eter mustloops determines whether all loops must be present for gamma to be considered a complete graph (default:
false (loops are ignored)).

See also 2.4.1.

gap> IsCompleteGraph(NullGraph(Group(()), 3));
false
gap> IsCompleteGraph(NullGraph(Group(()), 1));
true
gap> IsCompleteGraph(CompleteGraph(SymmetricGroup(3)), true);
false

4
Functions to

determine regularity
properties of graphs

This chapter describes functions to determine regularity properties of graphs, and a function VertexTransitiveDRGs
which determines the distance-regular graphs on which a given transitive permutation group acts as a vertex-transitive
group of automorphisms.

4.1 IsRegularGraph
1 I IsRegularGraph(gamma)

This boolean function returns true if and only if the graph gamma is (out)regular.

gap> IsRegularGraph(JohnsonGraph(4,2));
true
gap> IsRegularGraph(EdgeOrbitsGraph(Group(()),[[1,2]],2));
false

4.2 LocalParameters
1 I LocalParameters(gamma, V)

I LocalParameters(gamma, V, G)

Let gamma be a simple connected graph. Then this function determines all local parameters ci(V), ai(V), and bi(V)
that gamma may have, with respect to the singleton vertex or nonempty list of vertices V . We say that gamma has
the local parameter ci(V) (respectively ai(V), bi(V)), with respect to V , if the number of vertices at distance i − 1
(respectively i, i + 1) from V that are adjacent to a vertex w at distance i from V (see 3.15.1) is the constant ci(V)
(respectively ai(V), bi(V)) depending only on i and V (and not w).

The function LocalParameters returns a list whose i-th element is the list [ci−1(V), ai−1(V), bi−1(V)], except that if
some local parameter does not exist then −1 is put in its place.

This function can be used to determine whether a given subset of the vertices of a graph is a distance-regular code in
that graph.

The optional parameter G, if present, is assumed to be a subgroup of Aut (gamma) fixing V setwise. Including such a
G can speed up the function.

gap> gamma := JohnsonGraph(4,2);;
gap> LocalParameters(gamma, 1);
[[0, 0, 4], [1, 2, 1], [4, 0, 0]]
gap> LocalParameters(gamma, [1,6]);
[[0, 0, 4], [2, 2, 0]]
gap> LocalParameters(gamma, [1,2]);
[[0, 1, 3], [-1, -1, 0]]

22 Chapter 4. Functions to determine regularity properties of graphs

4.3 GlobalParameters
1 I GlobalParameters(gamma)

Let gamma be a simple connected graph, and 0 ≤ i ≤ Diameter(gamma). This function determines all global
parameters ci, ai, and bi that gamma may have. We say that gamma has the global parameter ci (respectively ai, bi) if
the number of vertices at distance i− 1 (respectively i, i + 1) from a vertex v that are adjacent to a vertex w at distance
i from v is the constant ci (respectively ai, bi) depending only on i (and not v and w).

The function GlobalParameters returns a list of length Diameter(gamma)+1, whose i-th element is the list [ci−1, ai−1, bi−1],
except that if some global parameter does not exist then −1 is put in its place.

Note that gamma is distance-regular if and only if this function returns no −1 in place of a global parameter (see
[BCN89]).

See also 4.2.1 and 4.4.1.

gap> gamma := JohnsonGraph(4,2);;
gap> GlobalParameters(gamma);
[[0, 0, 4], [1, 2, 1], [4, 0, 0]]
gap> GlobalParameters(BipartiteDouble(gamma));
[[0, 0, 4], [1, 0, 3], [-1, 0, -1], [4, 0, 0]]

4.4 IsDistanceRegular
1 I IsDistanceRegular(gamma)

This boolean function returns true if and only if gamma is distance-regular, i.e. gamma is simple, connected, and
all global parameters ci, ai, bi exist for 0 ≤ i ≤ Diameter(gamma) (see [BCN89]).

See also 4.3.1.

gap> gamma := JohnsonGraph(4,2);;
gap> IsDistanceRegular(gamma);
true
gap> IsDistanceRegular(BipartiteDouble(gamma));
false

4.5 CollapsedAdjacencyMat
1 I CollapsedAdjacencyMat(gamma)

I CollapsedAdjacencyMat(G, gamma)

The second form of this function returns the collapsed adjacency matrix for gamma, where the collapsing group is G.
It is assumed that G is a subgroup of Aut (gamma).

The (i, j)-entry of the collapsed adjacency matrix equals the number of edges in {[x, y] | y ∈ j-th G-orbit}, where x is
a fixed vertex in the i-th G-orbit.

In the case where this function is given just one argument, then it must be a graph gamma with the property that
gamma.group is transitive on the vertex-set of gamma. In this case, the returned collapsed adjacency matrix for
gamma is with respect to the stabilizer in gamma.group of 1.

The reader is warned that collapsed adjacency matrices can have different, but related meanings depending on the
setting and the author.

See also 4.6.1.

Section 7. VertexTransitiveDRGs 23

gap> gamma := JohnsonGraph(4,2);
rec(isGraph := true, order := 6,
group := Group([(1,4,6,3)(2,5), (2,4)(3,5)]),
schreierVector := [-1, 2, 1, 1, 1, 1], adjacencies := [[2, 3, 4, 5]],
representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]],
isSimple := true)

gap> G := Stabilizer(gamma.group, [1,6], OnSets);;
gap> CollapsedAdjacencyMat(G, gamma);
[[0, 4], [2, 2]]
gap> CollapsedAdjacencyMat(gamma);
[[0, 4, 0], [1, 2, 1], [0, 4, 0]]

4.6 OrbitalGraphColadjMats
1 I OrbitalGraphColadjMats(G)

I OrbitalGraphColadjMats(G, H)

This function returns a list of collapsed adjacency matrices for the orbital digraphs of the transitive permutation group
G, collapsed with respect to Stabilizer(G,1) (creating collapsed adjacency matrices for the orbital digraphs in the
sense of [PS97]). Also, the matrices are collapsed with respect to a fixed ordering of the orbits of Stabilizer(G,1),
with the trivial orbit [1] coming first.

The optional parameter H, if included, should be equal to Stabilizer(G,1). The knowledge of this stabilizer can
speed up the function.

The reader is warned that collapsed adjacency matrices can have different, but related meanings depending on the
setting and the author.

See also 4.5.1.

gap> OrbitalGraphColadjMats(SymmetricGroup(7));
[[[1, 0], [0, 1]], [[0, 6], [1, 5]]]

4.7 VertexTransitiveDRGs
1 I VertexTransitiveDRGs(coladjmats)

I VertexTransitiveDRGs(G)

This function can determine (among other things) all the distance-regular graphs on which a given transitive permu-
tation group G acts as a vertex-transitive group of automorphisms (as long as the permutation rank of G is not too
large).

In the first form of this function, the input parameter coladjmats must be a list of collapsed adjacency matrices for the
orbital digraphs of some transitive permutation group G, collapsed with respect to a point stabilizer (such as the list
of matrices produced by the function OrbitalGraphColadjMats). It is assumed that the orbital/suborbit indexing
used is the same as that for the rows (and columns) of each of the matrices, as well as for the indexing of the matrices
themselves, with the trivial orbital first, so that, in particular, coladjmats[1] must be an identity matrix.

In the second form of this function, the input parameter G must be a transitive permutation group, and then the result
returned will be the same as VertexTransitiveDRGs(OrbitalGraphColadjMats(G)).

In either case, this function returns a record result, which gives information on the transitive group G acting on its
natural set V . The most important component of this record is the list orbitalCombinations, whose elements give
the sets of (the indices of) the G-orbitals whose union gives the edge-set of a distance-regular graph with vertex-set
V . The component intersectionArrays gives the corresponding intersection arrays. The component degree is the

24 Chapter 4. Functions to determine regularity properties of graphs

degree of the permutation group G, rank is its (permutation) rank, and isPrimitive is true if G is primitive, and
false otherwise.

The techniques used in this function and definitions of the terms used above can be found in [PS97].

Warning This function checks all subsets of [2..result.rank], so the permutation rank of G must not be large!

gap> m22:=PrimitiveGroup(22,1);;
gap> syl:=SylowSubgroup(m22,11);;
gap> part:=Set(Orbit(syl,1));;
gap> l211:=Stabilizer(m22,part,OnSets);;
gap> rt:=RightTransversal(m22,l211);;
gap> m22big:=Action(m22,rt,OnRight);;
gap> v:=VertexTransitiveDRGs(m22big);
rec(degree := 672, rank := 6, isPrimitive := true,
orbitalCombinations := [[2, 3, 4, 5, 6], [2, 4], [3, 5, 6], [3, 6]

],
intersectionArrays := [[[0, 0, 671], [1, 670, 0]], [[0, 0, 495],

[1, 366, 128], [360, 135, 0]],
[[0, 0, 176], [1, 40, 135], [48, 128, 0]],
[[0, 0, 110], [1, 28, 81], [18, 80, 12], [90, 20, 0]]])

5 Some special vertex
subsets of a graph

This chapter describes functions to determine certain special vertex subsets of a graph.

5.1 ConnectedComponent
1 I ConnectedComponent(gamma, v)

This function returns the set of all vertices in gamma which can be reached by a path starting at the vertex v. The
graph gamma must be simple.

See also 5.2.1.

gap> ConnectedComponent(NullGraph(Group((1,2))), 2);
[2]
gap> ConnectedComponent(JohnsonGraph(4,2), 2);
[1, 2, 3, 4, 5, 6]

5.2 ConnectedComponents
1 I ConnectedComponents(gamma)

This function returns a list of the vertex sets of the connected components of gamma, which must be a simple graph.

See also 5.1.1.

gap> ConnectedComponents(NullGraph(Group((1,2,3,4))));
[[1], [2], [3], [4]]
gap> ConnectedComponents(JohnsonGraph(4,2));
[[1, 2, 3, 4, 5, 6]]

5.3 Bicomponents
1 I Bicomponents(gamma)

If the graph gamma, which must be simple, is bipartite, this function returns a length 2 list of bicomponents or parts
of gamma, otherwise the empty list is returned.

Note If gamma is bipartite but not connected, then its set of bicomponents is not uniquely determined.

See also 3.19.1.

gap> Bicomponents(NullGraph(SymmetricGroup(4)));
[[1 .. 3], [4]]
gap> Bicomponents(JohnsonGraph(4,2));
[]
gap> Bicomponents(BipartiteDouble(JohnsonGraph(4,2)));
[[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]

26 Chapter 5. Some special vertex subsets of a graph

5.4 DistanceSet
1 I DistanceSet(gamma, distances, V)

I DistanceSet(gamma, distances, V, G)

Let V be a vertex or a nonempty list of vertices of gamma. This function returns the set of vertices w of gamma, such
that d(V, w) is in distances (a list or singleton distance).

The optional parameter G, if present, is assumed to be a subgroup of Aut (gamma) fixing V setwise. Including such a
G can speed up the function.

See also 3.15.1 and 6.2.1.

gap> DistanceSet(JohnsonGraph(4,2), 1, [1,6]);
[2, 3, 4, 5]

5.5 Layers
1 I Layers(gamma, V)

I Layers(gamma, V, G)

Let V be a vertex or a nonempty list of vertices of gamma. This function returns a list whose i-th element is the set of
vertices of gamma at distance i− 1 from V .

The optional parameter G, if present, is assumed to be a subgroup of Aut (gamma) which fixes V setwise. Including
such a G can speed up the function.

See also 3.15.1.

gap> Layers(JohnsonGraph(4,2), 6);
[[6], [2, 3, 4, 5], [1]]

5.6 IndependentSet
1 I IndependentSet(gamma)

I IndependentSet(gamma, indset)
I IndependentSet(gamma, indset, forbidden)

Returns a (hopefully large) independent set of the graph gamma, which must be simple. An independent set of
gamma is a set of vertices of gamma, no two of which are joined by an edge. At present, a greedy algorithm is used.
The returned independent set will contain the (assumed) independent set indset (default: []), and not contain any
element of forbidden (default: [], in which case the returned independent set is maximal).

An error is signalled if indset and forbidden have non-trivial intersection.

See also 7.2.1 and 7.3.1, which can be used on the complement graph of gamma to look seriously for independent
sets.

gap> IndependentSet(JohnsonGraph(4,2), [3]);
[3, 4]

6
Functions to

construct new
graphs from old

This chapter describes functions to construct new graphs from old ones.

6.1 InducedSubgraph
1 I InducedSubgraph(gamma, V)

I InducedSubgraph(gamma, V, G)

This function returns the subgraph of gamma induced on the vertex list V (which must not contain repeated elements).
If the optional third parameter G is given, then it is assumed that G fixes V setwise, and is a group of automorphisms
of the induced subgraph when restricted to V . In that case, the image of G acting on V is the group associated with
the induced subgraph. If no such G is given then the associated group is trivial. The name of vertex i in the induced
subgraph is equal to the name of vertex V[i] in gamma.

gap> gamma := JohnsonGraph(4,2);;
gap> S := [2,3,4,5];;
gap> square := InducedSubgraph(gamma, S, Stabilizer(gamma.group,S,OnSets));
rec(
isGraph := true,
order := 4,
group := Group([(1,4), (1,3)(2,4), (1,2)(3,4)]),
schreierVector := [-1, 3, 2, 1],
adjacencies := [[2, 3]],
representatives := [1],
isSimple := true,
names := [[1, 3], [1, 4], [2, 3], [2, 4]])

gap> GlobalParameters(square);
[[0, 0, 2], [1, 0, 1], [2, 0, 0]]

6.2 DistanceSetInduced
1 I DistanceSetInduced(gamma, distances, V)

I DistanceSetInduced(gamma, distances, V, G)

Let V be a vertex or a nonempty list of vertices of gamma. This function returns the subgraph of gamma induced on
the set of vertices w of gamma such that d(V, w) is in distances (a list or singleton distance).

The optional parameter G, if present, is assumed to be a subgroup of Aut (gamma) fixing V setwise. Including such a
G can speed up the function.

See also 3.15.1 and 5.4.1.

28 Chapter 6. Functions to construct new graphs from old

gap> DistanceSetInduced(JohnsonGraph(4,2), [0,1], [1]);
rec(
isGraph := true,
order := 5,
group := Group([(2,3)(4,5), (2,5)(3,4)]),
schreierVector := [-1, -2, 1, 2, 2],
adjacencies := [[2, 3, 4, 5], [1, 3, 4]],
representatives := [1, 2],
isSimple := true,
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4]])

6.3 DistanceGraph
1 I DistanceGraph(gamma, distances)

This function returns the graph delta, with the same vertex-set (and vertex-names) as gamma, such that [x, y] is an
edge of delta if and only if d(x, y) (in gamma) is in distances (a list or singleton distance).

gap> DistanceGraph(JohnsonGraph(4,2), [2]);
rec(
isGraph := true,
order := 6,
group := Group([(1,4,6,3)(2,5), (2,4)(3,5)]),
schreierVector := [-1, 2, 1, 1, 1, 1],
adjacencies := [[6]],
representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]],
isSimple := true)

gap> ConnectedComponents(last);
[[1, 6], [2, 5], [3, 4]]

6.4 ComplementGraph
1 I ComplementGraph(gamma)

I ComplementGraph(gamma, comploops)

This function returns the complement of the graph gamma. The optional boolean parameter comploops determines
whether or not loops/nonloops are complemented (default: false (loops/nonloops are not complemented)). The re-
turned graph will have the same vertex-names as gamma.

gap> ComplementGraph(NullGraph(SymmetricGroup(3)));
rec(
isGraph := true,
order := 3,
group := SymmetricGroup([1 .. 3]),
schreierVector := [-1, 1, 1],
adjacencies := [[2, 3]],
representatives := [1],
isSimple := true)

gap> IsLoopy(last);
false
gap> IsLoopy(ComplementGraph(NullGraph(SymmetricGroup(3)),true));
true

Section 6. EdgeGraph 29

6.5 PointGraph
1 I PointGraph(gamma)

I PointGraph(gamma, v)

Assuming that gamma is simple, connected, and bipartite, this function returns the induced subgraph on the connected
component of DistanceGraph(gamma,2) containing the vertex v (default: v = 1).

Thus, if gamma is the incidence graph of a connected geometry of rank 2, and v represents a point, then the point
graph of the geometry is returned.

gap> BipartiteDouble(CompleteGraph(SymmetricGroup(4)));;
gap> PointGraph(last);
rec(
isGraph := true,
order := 4,
group := Group([(1,2), (1,2,3,4)]),
schreierVector := [-1, 1, 2, 2],
adjacencies := [[2, 3, 4]],
representatives := [1],
isSimple := true,
names := [[1, "+"], [2, "+"], [3, "+"], [4, "+"]])

gap> IsCompleteGraph(last);
true

6.6 EdgeGraph
1 I EdgeGraph(gamma)

This function return a graph isomorphic to the the edge graph (also called the line graph) of the simple graph gamma.

This edge graph delta has the unordered edges of gamma as vertices, and e is joined to f in delta precisely when
|e ∩ f | = 1. The name of the vertex of the returned graph corresponding to the unordered edge [v, w] of gamma (with
v < w) is [VertexName(gamma,v),VertexName(gamma,w)].

gap> EdgeGraph(CompleteGraph(SymmetricGroup(5)));
rec(
isGraph := true,
order := 10,
group := Group([(1, 5, 8,10, 4)(2, 6, 9, 3, 7), (2, 5)(3, 6)(4, 7)

]),
schreierVector := [-1, 2, 2, 1, 1, 1, 2, 1, 1, 1],
adjacencies := [[2, 3, 4, 5, 6, 7]],
representatives := [1],
isSimple := true,
names := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4],

[2, 5], [3, 4], [3, 5], [4, 5]])
gap> GlobalParameters(last);
[[0, 0, 6], [1, 3, 2], [4, 2, 0]]

30 Chapter 6. Functions to construct new graphs from old

6.7 SwitchedGraph
1 I SwitchedGraph(gamma, V)

I SwitchedGraph(gamma, V, H)

This function returns the switched graph delta of the graph gamma, switched with respect to the vertex list (or singleton
vertex) V .

The returned graph delta has vertex-set (and vertex-names) the same as gamma. If vertices x, y of delta are both in V
or both not in V , then [x, y] is an edge of delta if and only if [x, y] is an edge of gamma; otherwise [x, y] is an edge of
delta if and only if [x, y] is not an edge of gamma. If the optional third argument H is given, then it is assumed to be a
subgroup of Aut(gamma) stabilizing V setwise.

gap> J:=JohnsonGraph(4,2);
rec(
isGraph := true,
order := 6,
group := Group([(1,4,6,3)(2,5), (2,4)(3,5)]),
schreierVector := [-1, 2, 1, 1, 1, 1],
adjacencies := [[2, 3, 4, 5]],
representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]],
isSimple := true)

gap> S:=SwitchedGraph(J,[1,6]);
rec(
isGraph := true,
order := 6,
group := Group(()),
schreierVector := [-1, -2, -3, -4, -5, -6],
adjacencies := [[], [3, 4], [2, 5], [2, 5], [3, 4], []],
representatives := [1, 2, 3, 4, 5, 6],
isSimple := true,
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]])

gap> ConnectedComponents(S);
[[1], [2, 3, 4, 5], [6]]

6.8 UnderlyingGraph
1 I UnderlyingGraph(gamma)

This function returns the underlying graph delta of gamma. The graph delta has the same vertex-set (and vertex-
names) as gamma, and has an edge [x, y] precisely when gamma has an edge [x, y] or an edge [y, x]. This function also
sets the isSimple components of gamma and delta.

gap> gamma := EdgeOrbitsGraph(Group((1,2,3,4)), [1,2]);
rec(
isGraph := true,
order := 4,
group := Group([(1,2,3,4)]),
schreierVector := [-1, 1, 1, 1],
adjacencies := [[2]],
representatives := [1],
isSimple := false)

gap> UnderlyingGraph(gamma);
rec(

Section 10. BipartiteDouble 31

isGraph := true,
order := 4,
group := Group([(1,2,3,4)]),
schreierVector := [-1, 1, 1, 1],
adjacencies := [[2, 4]],
representatives := [1],
isSimple := true)

6.9 QuotientGraph
1 I QuotientGraph(gamma, R)

Let S be the smallest gamma.group-invariant equivalence relation on the vertices of gamma, such that S contains
the relation R (which should be a list of ordered pairs (length 2 lists) of vertices of gamma). Then this function
returns a graph isomorphic to the quotient delta of the graph gamma, defined as follows. The vertices of delta are the
equivalence classes of S, and [X, Y] is an edge of delta if and only if [x, y] is an edge of gamma for some x ∈ X, y ∈ Y .
The name of a vertex v in the returned graph is a list (not necessarily ordered) of the vertex-names of gamma for the
vertices in the equivalence class corresponding to v.

gap> gamma := JohnsonGraph(4,2);;
gap> QuotientGraph(gamma, [[1,6]]);
rec(
isGraph := true,
order := 3,
group := Group([(1,3), (2,3)]),
schreierVector := [-1, 2, 1],
adjacencies := [[2, 3]],
representatives := [1],
isSimple := true,
names := [[[1, 2], [3, 4]], [[1, 3], [2, 4]],

[[1, 4], [2, 3]]])
gap> IsCompleteGraph(last);
true

6.10 BipartiteDouble
1 I BipartiteDouble(gamma)

This function returns the bipartite double of the graph gamma, as defined in [BCN89].

gap> gamma := JohnsonGraph(4,2);;
gap> IsBipartite(gamma);
false
gap> delta := BipartiteDouble(gamma);
rec(
isGraph := true,
order := 12,
group := Group([(1, 4, 6, 3)(2, 5)(7,10,12, 9)(8,11),

(2, 4)(3, 5)(8,10)(9,11), (1, 7)(2, 8)(3, 9)(4,10)(5,11)
(6,12)]),

schreierVector := [-1, 2, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3],
adjacencies := [[8, 9, 10, 11]],
representatives := [1],
isSimple := true,

32 Chapter 6. Functions to construct new graphs from old

names := [[[1, 2], "+"], [[1, 3], "+"], [[1, 4], "+"],
[[2, 3], "+"], [[2, 4], "+"], [[3, 4], "+"],
[[1, 2], "-"], [[1, 3], "-"], [[1, 4], "-"],
[[2, 3], "-"], [[2, 4], "-"], [[3, 4], "-"]])

gap> IsBipartite(delta);
true

6.11 GeodesicsGraph
1 I GeodesicsGraph(gamma, x, y)

This function returns the the graph induced on the set of geodesics in gamma between the vertices x and y, but
including neither x nor y. This function is only for a simple graph gamma.

gap> GeodesicsGraph(JohnsonGraph(4,2), 1, 6);
rec(
isGraph := true,
order := 4,
group := Group([(1,3)(2,4), (1,4)(2,3), (2,3)]),
schreierVector := [-1, 2, 1, 2],
adjacencies := [[2, 3]],
representatives := [1],
isSimple := true,
names := [[1, 3], [1, 4], [2, 3], [2, 4]])

gap> GlobalParameters(last);
[[0, 0, 2], [1, 0, 1], [2, 0, 0]]

6.12 CollapsedIndependentOrbitsGraph
1 I CollapsedIndependentOrbitsGraph(G, gamma)

I CollapsedIndependentOrbitsGraph(G, gamma, N)

Given a subgroup G of the automorphism group of the simple graph gamma, this function returns a graph isomorphic
to delta, defined as follows. The vertices of delta are those G-orbits of the vertices of gamma that are independent sets
in gamma, and x is joined to y in delta if and only if x ∪ y is not an independent set in gamma. The name of a vertex
v in the returned graph is a list (not necessarily ordered) of the vertex-names of gamma for the vertices in the G-orbit
corresponding to v.

If the optional parameter N is given, then it is assumed to be a subgroup of Aut (gamma) preserving the set of G-
orbits of the vertices of gamma (for example, the normalizer in gamma.group of G). This information can make the
function more efficient.

gap> G := Group((1,2));;
gap> gamma := NullGraph(SymmetricGroup(3));;
gap> CollapsedIndependentOrbitsGraph(G, gamma);
rec(
isGraph := true,
order := 2,
group := Group([()]),
schreierVector := [-1, -2],
adjacencies := [[], []],
representatives := [1, 2],
isSimple := true,
names := [[1, 2], [3]])

Section 13. CollapsedCompleteOrbitsGraph 33

gap> gamma := CompleteGraph(SymmetricGroup(3));;
gap> CollapsedIndependentOrbitsGraph(G, gamma);
rec(
isGraph := true,
order := 1,
group := Group([()]),
schreierVector := [-1],
adjacencies := [[]],
representatives := [1],
isSimple := true,
names := [[3]])

6.13 CollapsedCompleteOrbitsGraph
1 I CollapsedCompleteOrbitsGraph(G, gamma)

I CollapsedCompleteOrbitsGraph(G, gamma, N)

Given a subgroup G of the automorphism group of the simple graph gamma, this function returns a graph isomorphic
to delta, defined as follows. The vertices of delta are those G-orbits of the vertices of gamma on which complete
subgraphs are induced in gamma, and x is joined to y in delta if and only if x 6= y and the subgraph of gamma induced
on x ∪ y is a complete graph. The name of a vertex v in the returned graph is a list (not necessarily ordered) of the
vertex-names of gamma for the vertices in the G-orbit corresponding to v.

If the optional parameter N is given, then it is assumed to be a subgroup of Aut (gamma) preserving the set of G-
orbits of the vertices of gamma (for example, the normalizer in gamma.group of G). This information can make the
function more efficient.

gap> G := Group((1,2));;
gap> gamma := NullGraph(SymmetricGroup(3));;
gap> CollapsedCompleteOrbitsGraph(G, gamma);
rec(
isGraph := true,
order := 1,
group := Group([()]),
schreierVector := [-1],
adjacencies := [[]],
representatives := [1],
names := [[3]],
isSimple := true)

gap> gamma := CompleteGraph(SymmetricGroup(3));;
gap> CollapsedCompleteOrbitsGraph(G, gamma);
rec(
isGraph := true,
order := 2,
group := Group([()]),
schreierVector := [-1, -2],
adjacencies := [[2], [1]],
representatives := [1, 2],
names := [[1, 2], [3]],
isSimple := true)

34 Chapter 6. Functions to construct new graphs from old

6.14 NewGroupGraph
1 I NewGroupGraph(G, gamma)

This function returns a copy delta of gamma, except that the group associated with delta is G, which is assumed to be
a subgroup of Aut (delta).

Note that the results of some functions of a graph depend on the group associated with that graph (which must always
be a subgroup of the automorphism group of the graph).

gap> gamma := JohnsonGraph(4,2);;
gap> aut := AutGroupGraph(gamma);
Group([(3,4), (2,3)(4,5), (1,2)(5,6)])
gap> Size(gamma.group);
24
gap> Size(aut);
48
gap> delta := NewGroupGraph(aut, gamma);;
gap> Size(delta.group);
48
gap> IsIsomorphicGraph(gamma, delta);
true

7 Vertex-Colouring and
Complete Subgraphs

The following sections describe functions for (proper) vertex-colouring or determining complete subgraphs of given
graphs. The function CompleteSubgraphsOfGivenSize can also be used to determine the complete subgraphs with
given vertex-weight sum in a vertex-weighted graph, where the weights can be positive integers or non-zero vectors
of non-negative integers.

7.1 VertexColouring
1 I VertexColouring(gamma)

This function returns a proper vertex-colouring C for the graph gamma, which must be simple.

This proper vertex-colouring C is a list of positive integers (the colours), indexed by the vertices of gamma, with the
property that C[i] 6= C[j] whenever [i, j] is an edge of gamma. At present a greedy algorithm is used, and the number
of colours used is by no means guaranteed to be minimal.

gap> VertexColouring(JohnsonGraph(4,2));
[1, 3, 2, 2, 3, 1]

7.2 CompleteSubgraphs
1 I CompleteSubgraphs(gamma)

I CompleteSubgraphs(gamma, k)
I CompleteSubgraphs(gamma, k, alls)

Let gamma be a simple graph and k an integer. This function returns a set K of complete subgraphs of gamma, where
a complete subgraph is represented by its vertex-set. If k is non-negative then the elements of K each have size k,
otherwise the elements of K represent maximal complete subgraphs of gamma. (A maximal complete subgraph of
gamma is a complete subgraph of gamma which is not properly contained in another complete subgraph of gamma.)
The default for k is −1, i.e. maximal complete subgraphs. See also CompleteSubgraphsOfGivenSize, which can
be used to compute the maximal complete subgraphs of given size, and can also be used to determine the (maximal or
otherwise) complete subgraphs with given vertex-weight sum in a vertex-weighted graph.

The optional parameter alls controls how many complete subgraphs are returned. The valid values for alls are 0, 1
(the default), and 2.

Warning: Using the default value of 1 for alls (see below) means that more than one element may be returned for some
gamma.group orbit(s) of the required complete subgraphs. To obtain just one element from each gamma.group orbit
of the required complete subgraphs, you must give the value 2 to the parameter alls.

If alls=0 (or false for backward compatibility) then K will contain at most one element. In this case, if k is negative
then K will contain just one maximal complete subgraph, and if k is non-negative then K will contain a complete
subgraph of size k if and only if such a subgraph is contained in gamma.

If alls=1 (or true for backward compatibility) then K will contain (perhaps properly) a set of gamma.group orbit-
representatives of the maximal (if k is negative) or size k (if k is non-negative) complete subgraphs of gamma.

If alls=2 then K will be a set of gamma.group orbit-representatives of the maximal (if k is negative) or size k (if k is
non-negative) complete subgraphs of gamma. This option can be more costly than when alls=1.

36 Chapter 7. Vertex-Colouring and Complete Subgraphs

Before applying CompleteSubgraphs, one may want to associate the full automorphism group of gamma with
gamma, via gamma := NewGroupGraph(AutGroupGraph(gamma), gamma);.

An alternative name for this function is Cliques .

See also 7.3.1.

gap> gamma := JohnsonGraph(5,2);
rec(isGraph := true, order := 10,
group := Group([(1, 5, 8,10, 4)(2, 6, 9, 3, 7), (2, 5)(3, 6)(4, 7)]),
schreierVector := [-1, 2, 2, 1, 1, 1, 2, 1, 1, 1],
adjacencies := [[2, 3, 4, 5, 6, 7]], representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4],

[2, 5], [3, 4], [3, 5], [4, 5]], isSimple := true)
gap> CompleteSubgraphs(gamma);
[[1, 2, 3, 4], [1, 2, 5]]
gap> CompleteSubgraphs(gamma,3,2);
[[1, 2, 3], [1, 2, 5]]
gap> CompleteSubgraphs(gamma,-1,0);
[[1, 2, 5]]

7.3 CompleteSubgraphsOfGivenSize
1 I CompleteSubgraphsOfGivenSize(gamma, k)

I CompleteSubgraphsOfGivenSize(gamma, k, alls)
I CompleteSubgraphsOfGivenSize(gamma, k, alls, maxi)
I CompleteSubgraphsOfGivenSize(gamma, k, alls, maxi, col)
I CompleteSubgraphsOfGivenSize(gamma, k, alls, maxi, col, wts)

Let gamma be a simple graph, and k a non-negative integer or vector of non-negative integers. This function returns
a set K (possibly empty) of complete subgraphs of size k of gamma. The vertices may have weights, which should
be non-zero integers if k is an integer and non-zero d-vectors of non-negative integers if k is a d-vector, and in these
cases, a complete subgraph of size k means a complete subgraph whose vertex-weights sum to k. The exact nature of
the set K depends on the values of the parameters supplied to this function. A complete subgraph is represented by its
vertex-set.

The optional parameter alls controls how many complete subgraphs are returned. The valid values for alls are 0, 1
(the default), and 2.

Warning: Using the default value of 1 for alls (see below) means that more than one element may be returned for some
gamma.group orbit(s) of the required complete subgraphs. To obtain just one element from each gamma.group orbit
of the required complete subgraphs, you must give the value 2 to the parameter alls.

If alls=0 (or false for backward compatibility) then K will contain at most one element. If maxi=false then K will
contain one element if and only if gamma contains a complete subgraph of size k. If maxi=true then K will contain
one element if and only if gamma contains a maximal complete subgraph of size k, in which case K will contain (the
vertex-set of) such a maximal complete subgraph. (A maximal complete subgraph of gamma is a complete subgraph
of gamma which is not properly contained in another complete subgraph of gamma.)

If alls=1 (or true for backward compatibility) and maxi=false, then K will contain (perhaps properly) a set of
gamma.group orbit-representatives of the size k complete subgraphs of gamma. If alls=1 (the default) and maxi=true,
then K will contain (perhaps properly) a set of gamma.group orbit-representatives of the size k maximal complete
subgraphs of gamma.

If alls=2 and maxi=false, then K will be a set of gamma.group orbit-representatives of the size k complete sub-
graphs of gamma. If alls=2 and maxi=true then K will be a set of gamma.group orbit-representatives of the size k
maximal complete subgraphs of gamma. This option can be more costly than when alls=1.

Section 3. CompleteSubgraphsOfGivenSize 37

The optional parameter maxi controls whether only maximal complete subgraphs of size k are returned. The default is
false, which means that non-maximal as well as maximal complete subgraphs of size k are returned. If maxi=true
then only maximal complete subgraphs of size k are returned. (Previous to version 4.1 of GRAPE, maxi=true meant
that it was assumed (but not checked) that all complete subgraphs of size k were maximal.)

The optional boolean parameter col is used to determine whether or not partial proper vertex-colouring is used to cut
down the search tree. The default is true, which says to use this partial colouring. For backward compatibility, col a
rational number means the same as col=true.

The optional parameter wts should be a list of vertex-weights; the list should be of length gamma.order, with the i-th
element being the weight of vertex i. The weights must be all positive integers if k is an integer, and all non-zero d-
vectors of non-negative integers if k is a d-vector. The default is that all weights are equal to 1. (Recall that a complete
subgraph of size k means a complete subgraph whose vertex-weights sum to k.)

If wts is a list of integers, then this list must be gamma.group invariant, where the action permutes the list positions
in the natural way.

If wts is a list of d-vectors then we assume that gamma.group acts on the set of all integer d-vectors by permuting
vector positions, such that, for all v in [1..gamma.order] and all g in gamma.group, we have wts[vg] = wts[v]g

(where the first action is OnPoints and for the second action, if ig = j then (wts[v]g)[j] = wts[v][i]), and that we
also have kg = k. These assumptions are not checked by the function, and the use of vector-weights is primarily for
advanced users of GRAPE.

An alternative name for this function is CliquesOfGivenSize .

See also 7.2.1.

gap> gamma:=JohnsonGraph(6,2);
rec(isGraph := true, order := 15,
group := Group([(1, 6,10,13,15, 5)(2, 7,11,14, 4, 9)(3, 8,12),

(2, 6)(3, 7)(4, 8)(5, 9)]),
schreierVector := [-1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1],
adjacencies := [[2, 3, 4, 5, 6, 7, 8, 9]], representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 3],

[2, 4], [2, 5], [2, 6], [3, 4], [3, 5], [3, 6], [4, 5],
[4, 6], [5, 6]], isSimple := true)

gap> CompleteSubgraphsOfGivenSize(gamma,4);
[[1, 2, 3, 4]]
gap> CompleteSubgraphsOfGivenSize(gamma,4,1,true);
[]
gap> CompleteSubgraphsOfGivenSize(gamma,5,2,true);
[[1, 2, 3, 4, 5]]
gap> delta:=NewGroupGraph(Group(()),gamma);;
gap> CompleteSubgraphsOfGivenSize(delta,5,2,true);
[[1, 2, 3, 4, 5], [1, 6, 7, 8, 9], [2, 6, 10, 11, 12],
[3, 7, 10, 13, 14], [4, 8, 11, 13, 15], [5, 9, 12, 14, 15]]

gap> CompleteSubgraphsOfGivenSize(delta,5,0);
[[1, 2, 3, 4, 5]]
gap> CompleteSubgraphsOfGivenSize(delta,5,1,false,true,
> [1,2,3,4,5,6,7,8,7,6,5,4,3,2,1]);
[[1, 4], [2, 3], [3, 14], [4, 15], [5], [11], [12, 15],
[13, 14]]

8
Automorphism groups

and isomorphism
testing for graphs

GRAPE provides a basic interface to B.D. McKay’s nauty (Version 2.2 final) package for calculating automorphism
groups of graphs and for testing graph isomorphism (see [McK90]). To use a function described in this chapter, which
depends on nauty, GRAPE must be fully installed (see 1.1).

8.1 Graphs with colour-classes

For each of the functions described in this chapter, each graph parameter may be replaced by a graph with colour-
classes, which is a record having (at least) the components graph (which should be a graph in GRAPE format), and
colourClasses, which should be an ordered partition of the vertices of the graph, and so define colour-classes for the
vertices. This ordered partition should be given as a list of (pairwise-disjoint non-empty) sets partitioning the vertex-
set. When these functions are called with graphs with colour-classes, then it is understood that an automorphism of
a graph with colour-classes is an automorphism of the graph which additionally preserves the list of colour-classes
(classwise), and an isomorphism from one graph with colour-classes to a second is a graph isomorphism from the
first graph to the second which additionally maps the first list of colour-classes to the second (classwise). The record
for a graph with colour-classes may also optionally contain the additional components autGroup and/or canoni-
calLabelling, and these are handled in an analogous way to those for a graph (such as when using the parameter
firstunbindcanon). Note that we do not require that adjacent vertices be in different colour-classes.

8.2 AutGroupGraph
1 I AutGroupGraph(gamma)

I AutGroupGraph(gamma, colourclasses)

The first version of this function returns the automorphism group of the graph (or graph with colour-classes) gamma,
using nauty (this can also be accomplished by typing AutomorphismGroup(gamma)). The automorphism group
Aut (gamma) of a graph gamma is the group consisting of the permutations of the vertices of gamma which preserve
the edge-set of gamma. The automorphism group of a graph with colour-classes is the subgroup of the automorphism
group of the graph which preserves the colour-classes (classwise).

The second version of this function is maintained only for backward compatibility. For this version gamma must be
a graph, colourclasses is an ordered partition of the vertices of gamma, and the subgroup of Aut (gamma) preserving
this ordered partition is returned. The ordered partition should be given as a list of (pairwise-disjoint non-empty) sets
partitioning the vertices of gamma, although for backward compatibility and only in this situation, the last set in the
ordered partition need not be included explicitly.

Section 3. GraphIsomorphism 39

gap> gamma := JohnsonGraph(4,2);
rec(adjacencies := [[2, 3, 4, 5]],
group := Group([(1,4,6,3)(2,5), (2,4)(3,5)]), isGraph := true,
isSimple := true,
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]],
order := 6, representatives := [1],
schreierVector := [-1, 2, 1, 1, 1, 1])

gap> Size(AutGroupGraph(gamma));
48
gap> AutGroupGraph(rec(graph:=gamma,colourClasses:=[[1,2,3],[4,5,6]]));
Group([(2,3)(4,5), (1,2)(5,6)])
gap> Size(AutomorphismGroup(rec(graph:=gamma,colourClasses:=[[1,6],[2,3,4,5]])));
16

8.3 GraphIsomorphism
1 I GraphIsomorphism(gamma1, gamma2)

I GraphIsomorphism(gamma1, gamma2, firstunbindcanon)

Let gamma1 and gamma2 both be graphs or both be graphs with colour-classes. Then this function makes use of the
nauty package to (try to) determine an isomorphism from gamma1 to gamma2. If gamma1 and gamma2 are isomor-
phic, then this function returns an isomorphism from gamma1 to gamma2. This isomorphism will be a permutation
of the vertices of gamma1 which maps the edge-set of gamma1 onto that of gamma2, and if gamma1 and gamma2
are graphs with colour-classes, this isomorphism will also map the colour-class list of gamma1 to that of gamma2
(classwise). If gamma1 and gamma2 are not isomorphic then this function returns fail.

The optional boolean parameter firstunbindcanon determines whether or not the canonicalLabelling components
of both gamma1 and gamma2 are first unbound before proceeding. If firstunbindcanon is true (the default, safe
and possibly slower option) then these components are first unbound. If firstunbindcanon is false, then any existing
canonicalLabelling components are used. However, since canonical labellings can depend on the version of nauty,
the version of GRAPE, parameter settings of nauty, and the compiler and computer used, you must be sure that
if firstunbindcanon=false then the canonicalLabelling component(s) which may already exist for gamma1 or
gamma2 were created in exactly the same environment in which you are presently computing.

See also 8.4.1.

gap> gamma := JohnsonGraph(5,3);
rec(adjacencies := [[2, 3, 4, 5, 7, 8]],
group := Group([(1,7,10,6,3)(2,8,4,9,5), (4,7)(5,8)(6,9)]),
isGraph := true, isSimple := true,
names := [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5],

[1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]],
order := 10, representatives := [1],
schreierVector := [-1, 1, 1, 2, 1, 1, 1, 2, 1, 1])

gap> delta := JohnsonGraph(5,2);
rec(adjacencies := [[2, 3, 4, 5, 6, 7]],
group := Group([(1,5,8,10,4)(2,6,9,3,7), (2,5)(3,6)(4,7)]),
isGraph := true, isSimple := true,
names := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4],

[2, 5], [3, 4], [3, 5], [4, 5]], order := 10,
representatives := [1], schreierVector := [-1, 2, 2, 1, 1, 1, 2, 1, 1, 1

])
gap> GraphIsomorphism(gamma, delta);
(3,5,6,8,7,4)

40 Chapter 8. Automorphism groups and isomorphism testing for graphs

gap> GraphIsomorphism(
> rec(graph:=gamma, colourClasses:=[[7],[1,2,3,4,5,6,8,9,10]]),
> rec(graph:=delta, colourClasses:=[[10],[1..9]]));
(1,3)(2,6,5)(4,8)(7,10,9)
gap> GraphIsomorphism(
> rec(graph:=gamma, colourClasses:=[[1],[6],[2,3,4,5,7,8,9,10]]),
> rec(graph:=delta, colourClasses:=[[1],[6],[2,3,4,5,7,8,9,10]]));
fail

8.4 IsIsomorphicGraph
1 I IsIsomorphicGraph(gamma1, gamma2)

I IsIsomorphicGraph(gamma1, gamma2, firstunbindcanon)

Let gamma1 and gamma2 both be graphs or both be graphs with colour-classes. Then this boolean function makes use
of the nauty package to test whether gamma1 and gamma2 are isomorphic (as graphs or as graphs with colour-classes,
respectively). The value true is returned if and only if the graphs (or graphs with colour-classes) are isomorphic.

The optional boolean parameter firstunbindcanon determines whether or not the canonicalLabelling components
of both gamma1 and gamma2 are first unbound before testing isomorphism. If firstunbindcanon is true (the default,
safe and possibly slower option) then these components are first unbound. If firstunbindcanon is false, then any
existing canonicalLabelling components are used, which was the behaviour in versions of GRAPE before 4.0.
However, since canonical labellings can depend on the version of nauty, the version of GRAPE, parameter settings
of nauty, and the compiler and computer used, you must be sure that if firstunbindcanon=false then the canon-
icalLabelling component(s) which may already exist for gamma1 or gamma2 were created in exactly the same
environment in which you are presently computing.

See also 8.3.1. For pairwise isomorphism testing of three or more graphs (or graphs with colour-classes), see 8.5.1.

gap> gamma := JohnsonGraph(5,3);
rec(adjacencies := [[2, 3, 4, 5, 7, 8]],
group := Group([(1,7,10,6,3)(2,8,4,9,5), (4,7)(5,8)(6,9)]),
isGraph := true, isSimple := true,
names := [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5],

[1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]],
order := 10, representatives := [1],
schreierVector := [-1, 1, 1, 2, 1, 1, 1, 2, 1, 1])

gap> delta := JohnsonGraph(5,2);
rec(adjacencies := [[2, 3, 4, 5, 6, 7]],
group := Group([(1,5,8,10,4)(2,6,9,3,7), (2,5)(3,6)(4,7)]),
isGraph := true, isSimple := true,
names := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4],

[2, 5], [3, 4], [3, 5], [4, 5]], order := 10,
representatives := [1], schreierVector := [-1, 2, 2, 1, 1, 1, 2, 1, 1, 1

])
gap> IsIsomorphicGraph(gamma, delta);
true
gap> IsIsomorphicGraph(
> rec(graph:=gamma, colourClasses:=[[7],[1,2,3,4,5,6,8,9,10]]),
> rec(graph:=delta, colourClasses:=[[10],[1..9]]));
true
gap> IsIsomorphicGraph(
> rec(graph:=gamma, colourClasses:=[[1],[6],[2,3,4,5,7,8,9,10]]),
> rec(graph:=delta, colourClasses:=[[1],[6],[2,3,4,5,7,8,9,10]]));
false

Section 5. GraphIsomorphismClassRepresentatives 41

8.5 GraphIsomorphismClassRepresentatives
1 I GraphIsomorphismClassRepresentatives(L)

I GraphIsomorphismClassRepresentatives(L, firstunbindcanon)

Given a list L of graphs, or of graphs with colour-classes, this function uses nauty to return a list consisting of pairwise
non-isomorphic elements of L, representing all the isomorphism classes of elements of L.

The optional boolean parameter firstunbindcanon determines whether or not the canonicalLabelling components
of all elements of L are first unbound before proceeding. If firstunbindcanon is true (the default, safe and possibly
slower option) then these components are first unbound. If firstunbindcanon is false, then any existing canoni-
calLabelling components of elements of L are used. However, since canonical labellings can depend on the version
of nauty, the version of GRAPE, parameter settings of nauty, and the compiler and computer used, you must be sure
that if firstunbindcanon=false then the canonicalLabelling component(s) which may already exist for elements
of L were created in exactly the same environment in which you are presently computing.

It is assumed that the computing environment is constant throughout the execution of this function.

gap> A:=JohnsonGraph(5,3);
rec(adjacencies := [[2, 3, 4, 5, 7, 8]],
group := Group([(1,7,10,6,3)(2,8,4,9,5), (4,7)(5,8)(6,9)]),
isGraph := true, isSimple := true,
names := [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5],

[1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]],
order := 10, representatives := [1],
schreierVector := [-1, 1, 1, 2, 1, 1, 1, 2, 1, 1])

gap> B:=JohnsonGraph(5,2);
rec(adjacencies := [[2, 3, 4, 5, 6, 7]],
group := Group([(1,5,8,10,4)(2,6,9,3,7), (2,5)(3,6)(4,7)]),
isGraph := true, isSimple := true,
names := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4],

[2, 5], [3, 4], [3, 5], [4, 5]], order := 10,
representatives := [1], schreierVector := [-1, 2, 2, 1, 1, 1, 2, 1, 1, 1

])
gap> R:=GraphIsomorphismClassRepresentatives([A,B,ComplementGraph(A)]);;
gap> Length(R);
2
gap> List(R,VertexDegrees);
[[6], [3]]
gap> R:=GraphIsomorphismClassRepresentatives(
> [rec(graph:=gamma, colourClasses:=[[1],[6],[2,3,4,5,7,8,9,10]]),
> rec(graph:=delta, colourClasses:=[[1],[6],[2,3,4,5,7,8,9,10]]),
> rec(graph:=ComplementGraph(gamma), colourClasses:=[[1],[6],[2,3,4,5,7,8,9,10]])]);;
gap> Length(R);
3

9 Partial Linear Spaces

Let s and t be positive integers. A partial linear space (P, L), with parameters (s, t) consists of a set P of points,
together with a set L of (s + 1)-subsets of P called lines, such that every point is in exactly t + 1 lines, and every pair
of distinct points is contained in at most one line. The point graph of a partial linear space S having point-set P is the
graph with vertex-set P and having [p, q] an edge if and only if p 6= q and p, q are in a common line of S. Two partial
linear spaces (P, L) and (P′, L′) (with parameters (s, t)) are said to be isomorphic if there is a bijection P→ P′ which
induces a bijection L → L′. An automorphism of a partial linear space is an isomorphism onto itself. The set of all
automorphisms of a partial linear space S forms a group, called the automorphism group of S.

GRAPE contains a function PartialLinearSpaces to determine and classify partial linear spaces with given point
graph and parameters. In this chapter we describe this function, and also give a research application of this function.

9.1 PartialLinearSpaces
1 I PartialLinearSpaces(ptgraph, s, t)

I PartialLinearSpaces(ptgraph, s, t, nspaces)
I PartialLinearSpaces(ptgraph, s, t, nspaces, printlevel)
I PartialLinearSpaces(ptgraph, s, t, nspaces, printlevel, cliques)

This function classifies the partial linear spaces with given point graph ptgraph, and parameters (s,t). It calls functions
making use of the nauty package within GRAPE, and so can only be used on systems on which GRAPE has been
fully installed.

The function PartialLinearSpaces returns a list of representatives of distinct isomorphism classes of partial linear
spaces with (simple) point graph ptgraph, and parameters (s,t). The default is that representatives for all isomorphism
classes are returned.

The integer argument nspaces is optional, and has default value -1, which means that representatives for all isomor-
phism classes are returned. If nspaces is non-negative then exactly nspaces representatives are returned if there are at
least nspaces isomorphism classes, otherwise representatives for all isomorphism classes are returned.

In the output of this function, a partial linear space S is given by its incidence graph delta. The point-vertices of delta
are 1,...,ptgraph.order, with the name of point-vertex i being the name of vertex i of ptgraph. A line-vertex of delta
is named by a list (not necessarily ordered) of the point-vertex names for the points on that line. We warn that this is a
different naming convention to versions of GRAPE before 4.1. The group delta.group associated with the incidence
graph delta is the automorphism group of S acting on point-vertices and line-vertices, and preserving both sets.

If printlevel is bound then it controls the print-level (default 0). Permitted values for printlevel are 0,1,2.

If cliques is bound then it is assumed to be a list (without repeats) of the (s + 1)-cliques of ptgraph. If known, this can
help the function to run faster.

Section 2. A research application of PartialLinearSpaces 43

gap> K7:=CompleteGraph(SymmetricGroup(7));;
gap> P:=PartialLinearSpaces(K7,2,2);
[rec(isGraph := true, order := 14,

group := Group([(1, 2)(5, 6)(9,11)(10,12),
(1, 2, 3)(5, 6, 7)(9,11,13)(10,12,14),
(1, 2, 3)(4, 7, 6)(9,12,14)(10,11,13),
(1, 4, 7, 6, 2, 5, 3)(8, 9,13,10,11,12,14)]),

schreierVector := [-1, 1, 2, 4, 4, 1, 3, -2, 4, 1, 1, 3, 4, 2],
adjacencies := [[8, 9, 10], [1, 2, 3]],
representatives := [1, 8],
names := [1, 2, 3, 4, 5, 6, 7, [1, 2, 3], [1, 4, 5], [1, 6, 7],

[2, 4, 6], [2, 5, 7], [3, 4, 7], [3, 5, 6]],
isSimple := true)]

gap> Size(P[1].group);
168
gap> T:=ComplementGraph(JohnsonGraph(10,2));;
gap> P:=PartialLinearSpaces(T,4,6);;
gap> List(P,x->Size(x.group));
[216, 1512]

9.2 A research application of PartialLinearSpaces

We now provide an extended example of the use of GRAPE which illustrates a research application of the Par-
tialLinearSpaces function.

First we give a definition. Let s and t be positive integers. A partial geometry is a partial linear space with parameters
(s, t) for which there is an additional constant constant α > 0, such that, for every line l and every point p not on l,
there are exactly α lines through p meeting l in some point.

Our example shows that the Haemers partial geometry [Hae81] is uniquely determined (up to isomorphism) by its
point graph, as is the dual of the Haemers geometry (where the role of points and lines are interchanged), and that
each of these geoemetries has automorphism group isomorphic to A7.

We first construct and study the Hoffman-Singleton graph, using the construction of Peter Cameron contained in
[Cam99]. We then construct the point graph of the Haemers partial geometry [Hae81] (this partial geometry has
(s, t) = (4, 17) and α = 2). The vertices of this point graph are the edges of the Hoffman-Singleton graph, and two
such vertices are adjacent in the point graph precisely when they are at distance 2 in the edge-graph of the Hoffman-
Singleton graph (see [Hae81]). We then construct and classify (up to isomorphism) all partial linear spaces with
parameters (4, 17) having point graph isomorphic to that of the Haemers partial geometry. We find that the Haemers
partial geometry is the only possibility. It follows from basic theory of partial geometries that the Haemers partial
geometry is uniquely determined up to isomorphism (as a partial geometry) by its point graph. We also show that the
dual of the Haemers partial geometry is also uniquely determined by its point graph. Thus far, the only proof of these
results is by GRAPE. Our example also shows that the Haemers partial geometry and its dual each has automorphism
group isomorphic to A7.

The total runtime (not including calls of nauty) was about 300 CPU-seconds on a Pentium II running at 350 MHz.

gap> LoadPackage("grape");
true
gap>
gap> OnSetsRecursive:=function(x,g)
> if not IsList(x) then
> return x^g;
> else
> return Set(List(x, y->OnSetsRecursive(y,g)));

44 Chapter 9. Partial Linear Spaces

> fi;
> end;;
gap>
gap> HofSingAdjacency := function(x,y)
> #
> # This boolean function returns true iff x and y are
> # adjacent in the Hoffman-Singleton graph, in Peter Cameron’s
> # construction.
> #
> if Size(x)=3 then # x is a 3-set
> if Size(y)=3 then # y is a 3-set
> return Intersection(x,y)=[]; # join iff disjoint
> else # y is a projective plane
> return x in y; # join iff x is a line of y
> fi;
> else # x is a projective plane
> if Size(y)=3 then # y is a 3-set
> return y in x; # join iff y is a line of x
> else # y is a projective plane
> return false; # don’t join
> fi;
> fi;
> end;;
gap>
gap> projectiveplane:=
> Set([[1,2,4],[2,3,5],[3,4,6],[4,5,7],[1,5,6],[2,6,7],[1,3,7]]);;
gap>
gap> HofSingGraph:=Graph(AlternatingGroup(7),
> [[1,2,3], projectiveplane], OnSetsRecursive,
> HofSingAdjacency);;
gap> GlobalParameters(HofSingGraph);
[[0, 0, 7], [1, 0, 6], [1, 6, 0]]
gap> autgrp := AutGroupGraph(HofSingGraph);;
gap> Size(autgrp);
252000
gap> HofSingGraph := NewGroupGraph(autgrp,HofSingGraph);;
gap> pointgraph:=DistanceGraph(EdgeGraph(HofSingGraph), 2);;
gap> GlobalParameters(pointgraph);
[[0, 0, 72], [1, 20, 51], [36, 36, 0]]
gap> spaces:=PartialLinearSpaces(pointgraph,4,17);;
gap> Length(spaces);
1
gap> haemers:=spaces[1];;
gap> DisplayCompositionSeries(haemers.group);
G (3 gens, size 2520)
A(7)

1 (0 gens, size 1)
gap> linegraph:=PointGraph(haemers, Adjacency(haemers,1)[1]);;
gap> spaces:=PartialLinearSpaces(linegraph,17,4);;
gap> Length(spaces);
1
gap> dualhaemers:=spaces[1];;

Section 2. A research application of PartialLinearSpaces 45

gap> DisplayCompositionSeries(dualhaemers.group);
G (4 gens, size 2520)
A(7)

1 (0 gens, size 1)

Bibliography

[BCN89] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer, Berlin, Heidelberg and
New York, 1989.

[Cam99] Peter J. Cameron. Permutation Groups. Cambridge University Press, 1999. book’s web-page:

http://www.maths.qmul.ac.uk/~pjc/permgps/pgbook.html.

[CSS99] Hans Cuypers, Leonard H. Soicher, and Hans Sterk. The small mathieu groups (project). In Arjeh M. Cohen,
Hans Cuypers, and Hans Sterk, editors, Some Tapas of Computer Algebra, volume 4 of Algorithms and
Computation in Mathematics, pages 323–337. Springer, Berlin, Heidelberg and New York, 1999.

[Hae81] Willem Haemers. A new partial geometry constructed from the hoffman-singleton graph. In P. J. Cameron,
J. W. P. Hirschfeld, and D. R. Hughes, editors, Finite Geometries and Designs: Proceedings of the Second
Isle of Thorns Conference 1980, volume 49 of London Mathematical Society Lecture Note Series, pages
119–127. Cambridge University Press, 1981.

[HL99] Alexander Hulpke and Steve Linton. Construction of Co3. An example of the use of an integrated system
for Computational Group Theory. In C. M. Campbell, E. F. Robertson, N. Ruskuc, and G. C. Smith, editors,
Groups St Andrews 1997 in Bath, volume 260/261 of London Mathematical Society Lecture Note Series,
pages 394–409. Cambridge University Press, 1999.

[McK90] Brendan D. McKay. nauty user’s guide (version 1.5), Technical report TR-CS-90-02. Australian National
University, Computer Science Department, 1990. nauty homepage:

http://cs.anu.edu.au/people/bdm/nauty/.

[PS97] Cheryl E. Praeger and Leonard H. Soicher. Low rank representations and graphs for sporadic groups,
volume 8 of Australian Mathematical Society Lecture Series. Cambridge University Press, 1997.

[Soi93] Leonard H. Soicher. GRAPE: a system for computing with graphs and groups. In Larry Finkelstein
and William M. Kantor, editors, Groups and Computation, volume 11 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 287–291. American Mathematical Society, 1993.
GRAPE homepage:

http://www.maths.qmul.ac.uk/~leonard/grape/.

[Soi04] Leonard H. Soicher. Computing with graphs and groups. In Lowell W. Beineke and Robin J. Wilson, editors,
Topics in Algebraic Graph Theory, volume 102 of Encyclopedia of Mathematics and its Applications, pages
250–266. Cambridge University Press, 2004.

[Soi06] Leonard H. Soicher. Is there a McLaughlin geometry? J. Algebra, 300:248–255, 2006.

Index
This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before
“permutation group”.

A
AddEdgeOrbit, 12
AddEdgeOrbit, 12
Adjacency, 17
Adjacency, 17
A research application of PartialLinearSpaces, 43
AssignVertexNames, 13
AssignVertexNames, 13
AutGroupGraph, 38
AutGroupGraph, 38

B
Bicomponents, 25
Bicomponents, 25
BipartiteDouble, 31
BipartiteDouble, 31

C
CayleyGraph, 12
CayleyGraph, 12
cliques, 36
cliquesofgivensize, 37
CollapsedAdjacencyMat, 22
CollapsedAdjacencyMat, 22
CollapsedCompleteOrbitsGraph, 33
CollapsedCompleteOrbitsGraph, 33
CollapsedIndependentOrbitsGraph, 32
CollapsedIndependentOrbitsGraph, 32
ComplementGraph, 28
ComplementGraph, 28
CompleteGraph, 11
CompleteGraph, 11
CompleteSubgraphs, 35
CompleteSubgraphs, 35
CompleteSubgraphsOfGivenSize, 36
CompleteSubgraphsOfGivenSize, 36
ConnectedComponent, 25
ConnectedComponent, 25
ConnectedComponents, 25

ConnectedComponents, 25

D
Diameter, 18
Diameter, 18
DirectedEdges, 17
DirectedEdges, 17
Distance, 18
Distance, 18
DistanceGraph, 28
DistanceGraph, 28
DistanceSet, 26
DistanceSet, 26
DistanceSetInduced, 27
DistanceSetInduced, 27

E
EdgeGraph, 29
EdgeGraph, 29
EdgeOrbitsGraph, 10
EdgeOrbitsGraph, 10
Examples of the use of GRAPE, 7

G
GeodesicsGraph, 32
GeodesicsGraph, 32
Girth, 19
Girth, 19
GlobalParameters, 22
GlobalParameters, 22
Graph, 9
Graph, 9
GraphIsomorphism, 39
GraphIsomorphism, 39
GraphIsomorphismClassRepresentatives, 41
GraphIsomorphismClassRepresentatives, 41
Graphs with colour-classes, 38

I
IndependentSet, 26

48 Index

IndependentSet, 26
InducedSubgraph, 27
InducedSubgraph, 27
Installing the GRAPE Package, 5
IsBipartite, 19
IsBipartite, 19
IsCompleteGraph, 20
IsCompleteGraph, 20
IsConnectedGraph, 19
IsConnectedGraph, 19
IsDistanceRegular, 22
IsDistanceRegular, 22
IsEdge, 17
IsEdge, 17
IsGraph, 15
IsGraph, 15
IsIsomorphicGraph, 40
IsIsomorphicGraph, 40
IsLoopy, 16
IsLoopy, 16
IsNullGraph, 20
IsNullGraph, 20
IsRegularGraph, 21
IsRegularGraph, 21
IsSimpleGraph, 17
IsSimpleGraph, 17
IsVertex, 15
IsVertex, 15

J
JohnsonGraph, 11
JohnsonGraph, 11

L
Layers, 26
Layers, 26
Loading GRAPE, 6
LocalParameters, 21
LocalParameters, 21

N
NewGroupGraph, 34
NewGroupGraph, 34
NullGraph, 10
NullGraph, 10

O
OrbitalGraphColadjMats, 23
OrbitalGraphColadjMats, 23
OrderGraph, 15
OrderGraph, 15

P
PartialLinearSpaces, 42
PartialLinearSpaces, 42
PointGraph, 29
PointGraph, 29

Q
QuotientGraph, 31
QuotientGraph, 31

R
RemoveEdgeOrbit, 13
RemoveEdgeOrbit, 13

S
SwitchedGraph, 30
SwitchedGraph, 30

T
The structure of a graph in GRAPE, 7

U
UnderlyingGraph, 30
UnderlyingGraph, 30
UndirectedEdges, 18
UndirectedEdges, 18

V
vertex-weighted graph, 35
VertexColouring, 35
VertexColouring, 35
VertexDegree, 16
VertexDegree, 16
VertexDegrees, 16
VertexDegrees, 16
VertexName, 15
VertexName, 15
VertexNames, 16
VertexNames, 16
VertexTransitiveDRGs, 23
VertexTransitiveDRGs, 23
Vertices, 16
Vertices, 16

	Contents
	Grape
	Installing the GRAPE Package
	Loading GRAPE
	The structure of a graph in GRAPE
	Examples of the use of GRAPE

	Functions to construct and modify graphs
	Graph
	EdgeOrbitsGraph
	NullGraph
	CompleteGraph
	JohnsonGraph
	CayleyGraph
	AddEdgeOrbit
	RemoveEdgeOrbit
	AssignVertexNames

	Functions to inspect graphs, vertices and edges
	IsGraph
	OrderGraph
	IsVertex
	VertexName
	VertexNames
	Vertices
	VertexDegree
	VertexDegrees
	IsLoopy
	IsSimpleGraph
	Adjacency
	IsEdge
	DirectedEdges
	UndirectedEdges
	Distance
	Diameter
	Girth
	IsConnectedGraph
	IsBipartite
	IsNullGraph
	IsCompleteGraph

	Functions to determine regularity properties of graphs
	IsRegularGraph
	LocalParameters
	GlobalParameters
	IsDistanceRegular
	CollapsedAdjacencyMat
	OrbitalGraphColadjMats
	VertexTransitiveDRGs

	Some special vertex subsets of a graph
	ConnectedComponent
	ConnectedComponents
	Bicomponents
	DistanceSet
	Layers
	IndependentSet

	Functions to construct new graphs from old
	InducedSubgraph
	DistanceSetInduced
	DistanceGraph
	ComplementGraph
	PointGraph
	EdgeGraph
	SwitchedGraph
	UnderlyingGraph
	QuotientGraph
	BipartiteDouble
	GeodesicsGraph
	CollapsedIndependentOrbitsGraph
	CollapsedCompleteOrbitsGraph
	NewGroupGraph

	Vertex-Colouring and Complete Subgraphs
	VertexColouring
	CompleteSubgraphs
	CompleteSubgraphsOfGivenSize

	Automorphism groups and isomorphism testing for graphs
	Graphs with colour-classes
	AutGroupGraph
	GraphIsomorphism
	IsIsomorphicGraph
	GraphIsomorphismClassRepresentatives

	Partial Linear Spaces
	PartialLinearSpaces
	A research application of PartialLinearSpaces

	Bibliography
	Index
	A
	B
	C
	D
	E
	G
	I
	J
	L
	N
	O
	P
	Q
	R
	S
	T
	U
	V

