
MayaVi2 Users Guide

Author: Prabhu Ramachandran
Contact: prabhu[at]aero.iitb.ac.in

Contents

Vision 2

Introduction 2
Technical details . 3

Installation 3
Requirements . 3
Eggs . 4

Introduction to Eggs . 4
The bleeding edge: SVN . 5

An overview of MayaVi 6

Quick tour 7
heart.vtk example . 7
fire_ug.vtu example . 10
Parametric surfaces example . 12

Using MayaVi 14
Command line arguments . 15
General layout of UI . 16
Interaction with the scene . 19

Mouse interaction . 20
Keyboard interaction . 20

The embedded Python interpreter . 21
Visualizing data . 21
Modules . 22
Filters . 23

Scripting MayaVi 24
Design Overview . 25
Scripting the mayavi2 application . 30

1

Scripting from the UI . 30
Scripting from IPython . 31
An example . 32

Using mlab . 33
Using the mayavi envisage plugins . 35

Creating data for MayaVi 35

Tips and Tricks 36
Customizing mayavi2 . 36
Off screen rendering . 36

Miscellaneous 37
Tests for MayaVi2 . 37
Getting help . 37
Helping out . 38

Vision

MayaVi2 seeks to provide easy and interactive visualization of 3D data. It does this by
the following:

• an (optional) rich user interface with dialogs to interact with all data
and objects in the visualization.

• a simple and clean scripting interface in Python, including one-liners,
a-la mlab, or object-oriented programming interface.

• harnesses the power of the VTK toolkit without forcing you to learn it.

Additionally Mayavi2 strives to be a reusable tool that can be embedded in your appli-
cations in different ways or combined with the envisage application-building framework
to assemble domain-specific tools.

Introduction

MayaVi2 is a general purpose, cross-platform tool for 3-D scientific data visualization.
Its features include:

• Visualization of scalar, vector and tensor data in 2 and 3 dimensions

• Easy scriptability using Python

• Easy extendability via custom sources, modules, and data filters

• Reading several file formats: VTK (legacy and XML), PLOT3D, etc.

• Saving of visualizations

• Saving rendered visualization in a variety of image formats

2

https://svn.enthought.com/enthought/wiki/MayaVi
http://www.python.org
https://svn.enthought.com/enthought/attachment/wiki/MayaVi/mlab.pdf
http://www.vtk.org
https://svn.enthought.com/enthought/wiki/Envisage
http://www.vtk.org

• Convenient functionality for rapid scientific plotting via mlab (see Using
mlab)

Unlike its predecessor MayaVi1, MayaVi2 has been designed with scriptability and
extensibility in mind from the ground up. While the mayavi2 application is usable by
itself, it may be used as an Envisage plugin which allows it to be embedded in user
applications natively. Alternatively, it may be used as a visualization engine for any
application.

Technical details

MayaVi-2 provides a general purpose visualization engine based on a pipeline architecture
similar to that used in VTK. MayaVi2 also provides an Envisage plug-in for 2D/3D
scientific data visualization. MayaVi2 uses the Enthought Tool Suite (ETS) in the form
of Traits, TVTK and Envisage. Here are some of its features:

• Allows users to easily visualize scalar, vector and (eventually) tensor
field data in 2 and 3 dimensions.

• Easier to script than MayaVi-1 due to a much cleaner MVC design.

• Easy to extend with added sources, components, modules and data
filters.

• Envisage plugin. This implies that it is:

– easy to use other envisage plugins in mayavi. For exam-
ple, Mayavi provides an embedded Python shell. This
is an Envisage plugin and requires one line of code to
include in Mayavi.

– easy to use Mayavi inside Envisage based applications.
Thus, any envisage based application can readily use
the mayavi plugin and script it to visualize data.

• wxPython/Qt4 based GUI (thanks entirely to Traits, PyFace and En-
visage). It is important to note that there is no wxPython or Qt4 code
used directly in Mayavi source.

• Persistent visualizations like in MayaVi1.

• Ability to save rendered visualizations to various image formats.

Installation

Up-to-date install instructions are always available at the MayaVi2 web page. The fol-
lowing instructions are likely not up-to-date but should give you a good idea of the
general installation procedure and a start on where to look.

Requirements

Mayavi requires at the very minimum the following packages:

3

http://mayavi.sourceforge.net
http://code.enthought.com/ets
https://svn.enthought.com/enthought/wiki/Traits
https://svn.enthought.com/enthought/wiki/TVTK
https://svn.enthought.com/enthought/wiki/Envisage
http://mayavi.sourceforge.net
https://svn.enthought.com/enthought/wiki/MayaVi

• VTK >= 4.4 (5.x is ideal)

• numpy >= 1.0.1

• wxPython 2.6.x

• setuptools (for installation and egg builds)

• TVTK (enthought.tvtk)

• Traits >= 2.0 (enthought.traits)

• Envisage == 2.x (enthought.envisage)

One can install the requirements in several ways.

• Win32: Under Win32 the best way to get all the dependencies is to use
Enthought’s enstaller.

• Linux: Most Linux distributions will have installable binaries avail-
able for the some of the above. For example, under Debian or Ubuntu
you would need python-vtk, python-wxgtk2.6, python-setuptools,
python-numpy.

• Mac OS X: The best available instructions for this platform are available
on the IntelMacPython25 page.

There are several ways to install TVTK, Traits and MayaVi. These are described in
the following.

Eggs

MayaVi is part of the Enthought Tool Suite (ETS). ETS has been organized into several
different Python packages. These packages are distributed as Python Eggs. Python eggs
are fairly sophisticated and carry information on dependencies with other eggs. As such
they are rapidly becoming the standard for distributing Python packages.

Introduction to Eggs

There are primarily two ways to use ETS eggs.

1. The first and easiest is to use pre-built eggs built for your particular
platform. More instructions on this follow.

2. The second is to build the eggs from the source tarballs. This is also
fairly easy to do if you have a decent build environment.

Given this background please see the following:

• InstallWithEggs describes how ETS can be installed with eggs. Check
this page first.

• If there aren’t any pre-built eggs for your platform, first make sure the
requirements are installed, and then build and install the eggs like so:

4

http://www.vtk.org
http://www.scipy.org
http://www.wxpython.org
http://peak.telecommunity.com/DevCenter/setuptools
https://svn.enthought.com/enthought/wiki/TVTK
https://svn.enthought.com/enthought/wiki/Traits
https://svn.enthought.com/enthought/wiki/Envisage
http://code.enthought.com/enstaller
http://www.debian.org
http://www.ubuntu.com
https://svn.enthought.com/enthought/wiki/IntelMacPython25
https://svn.enthought.com/enthought/wiki/TVTK
https://svn.enthought.com/enthought/wiki/Traits
https://svn.enthought.com/enthought/wiki/MayaVi
http://code.enthought.com/ets
http://peak.telecommunity.com/DevCenter/PythonEggs
https://svn.enthought.com/enthought/wiki/InstallWithEggs

$ easy_install -f http://code.enthought.com/enstaller/eggs/source \

> enthought.mayavi

This one command will download, build and install all the required
ETS related modules that mayavi needs. If you run into trouble please
check the InstallWithEggs pages. Note that the above is really one line,
it has been split with the \ character into two lines in order to fit on
the printed version of this document.

• Install describes the various ways to install the ETS of which mayavi2
is a part.

• Additionally, non-modular source tarballs can be downloaded at

http://code.enthought.com/downloads/source/

giving the different ETS dependencies for mayavi as a set of monolithic
downloads.

The bleeding edge: SVN

If you want to get the latest development version of mayavi, we recommend that you
check it out from SVN.

• Currently the easiest way to get mayavi from the SVN repository is to do the
following:

1. Make sure you have all the requirements installed.
2. Checkout the branches (current development is occurring in

the branches):
svn co https://svn.enthought.com/svn/enthought/branches

3. Run egg_builder.py like so (the built eggs will be put in
the dist directory):

cd branches

python egg_builder.py

4. Install the necessary packages and pull any packages not in
the branches from the last stable release:

$ cd branches

$ easy_install -f http://code.enthought.com/enstaller/eggs/source \

> -f dist enthought.mayavi

5. You should be all set. Try any of the examples in your work-
ing copy.

The easiest way to test if your install is OK is to run the mayavi2 command like so:

mayavi2

To get more help on the command try this:

mayavi2 -h

5

https://svn.enthought.com/enthought/wiki/InstallWithEggs
https://svn.enthought.com/enthought/wiki/Install
http://code.enthought.com/downloads/source/

mayavi2 is the mayavi application. On some platforms like win32 you will need to
double click on the mayavi2.exe program found in your Python2X\Scripts folder. Make
sure this directory is in your path.

Mayavi can be used in a variety of other ways but the the mayavi2 application is the
easiest to start with.

If you have the source tarball of mayavi or downloaded it via SVN, you can run
the examples in enthought.mayavi*/examples. There are plenty of example scripts
illustrating various features. Tests are available in the enthought.mayavi*/tests sub-
directory.

An overview of MayaVi

All the following sections assume you have a working mayavi Installation.
As a user there are two primary ways to use mayavi:

1. Use the mayavi2 application completely graphically. More informa-
tion on this is in the Using MayaVi section.

2. Script MayaVi from Python. MayaVi features a powerful and general
purpose scripting API.

a. You can script mayavi while using the mayavi2

application in order to automate tasks and ex-
tend mayavi’s behavior.

b. You can script mayavi from your own Python
based application.

c. You can embed mayavi into your application in
a variety of ways either using Envisage or oth-
erwise.

More details on this are available in the Scripting MayaVi chapter.

MayaVi is a scientific data visualizer. There are two primary ways to make your data
available to it.

1. Use a supported file format like VTK legacy or VTK XML files etc.
See VTK file formats for more information on the VTK formats.

2. Generate a TVTK dataset via numpy arrays or any other sequence.

More information on datasets in general and how to create VTK files or create them
from numpy arrays is available in the Creating data for MayaVi section.

MayaVi uses a pipeline architecture like VTK. As far as a user is concerned this
basically boils down to a simple hierarchy.

• The user visualizes data on a TVTK Scene -- this is an area where the
3D visualization is performed. New scenes may be created by using the
File->New->VTK Scene menu.

6

https://svn.enthought.com/enthought/wiki/Envisage
http://www.vtk.org/pdf/file-formats.pdf
http://www.scipy.org
http://www.vtk.org

• On each scene the user loads data (either using a file or created from a
script). Any number of data files or data objects may be opened.

• This data is optionally processed using Filters that operate on the data
and visualized using visualization Modules. The Filters and Modules
are accessible via the Visualize menu on the UI or may be instantiated
as Python objects.

More information on each of these are available in the following sections.

Quick tour

To get acquainted with mayavi you may start up mayavi2 like so:

$ mayavi2

On windows you can double click on the installed mayavi2.exe executable (usually in
the Python2X\Scripts directory).

Once mayavi starts, you may resize the various panes of the user interface to get a
comfortable layout. These settings will become the default “perspective” of the mayavi
application. More details on the UI are available in the General layout of UI section.

Before proceeding on the quick tour it is important to locate some data to exper-
iment with. The mayavi sources ship with several useful data files for examples and
testing. These may be found in the examples/data directory inside the root of the
mayavi source tree. If these are not installed, the sources may be downloaded from here:
http://code.enthought.com/enstaller/eggs/source/

If for some reason the sample data files are not available or there is no Internet access
to download them, one can always create some interesting looking surfaces using the
File->Open->Create Parametric surface source menu item. This will let us create very
pretty looking surfaces without reference to any external data. This is described in the
Parametric surfaces example section below.

heart.vtk example

This section describes a simple example with the heart.vtk file. This is a simple volume
of 3D data (32 x 32 x 12 points) with scalars at each point (the points are equally spaced).
The data is a structured dataset (an ImageData in fact), we’ll read more about these
later but you can think of it as a cube of points regularly spaced with some scalar data
associated with each point. The data apparently represents a CT scan of a heart. I have
no idea whose heart! The file is a readable text file, look at it in a text editor if you’d
like to.

1. With mayavi2 started, we start by opening the data file. Go to
the File->Open->VTK File menu item and then in the file dialog,
navigate to the directory that contains the sample data. There select
the heart.vtk file.

7

http://code.enthought.com/enstaller/eggs/source/

Once you choose the data, you will see a new node on the MayaVi
tree view on the left that says VTK file (heart.vtk). Note that you
will not see anything visualized on the TVTK scene yet.

2. To see an outline (a box) of the data, navigate to the Visualize-
>Modules menu item and select the Outline module. You will im-
mediately see a white box on the TVTK scene. You should also
see two new nodes on the tree view, one called Modules and one
underneath that called Outline.

3. You can change properties of the outline displayed by clicking on the
Outline node on the left. This will create an object editor window
on left bottom of the window (the object editor tab) below the tree
view. Play with the settings here and look at the results. If you
double-click a node on the tree view it will pop up the editor dialog
rather than show it in the embedded object editor.

Note that in general, the editor window for a Module will have a sec-
tion for the Actor, one for the Mapper and one for Property. These
refer to TVTK/VTK terminology. You may think of Properties as
those related to the color, representation (surface, wireframe, etc.),
line size etc. Things grouped under Actor are related to the object
that is rendered on screen and typically the editor will let you toggle
its visibility. In VTK parlance, the word Mapper refers to an object
that converts the data to graphics primitives. Properties related to
it will be grouped under the Mapper head.

4. To interact with the TVTK scene window, look at the section on
Interaction with the scene for more details. Experiment with these
options till you are comfortable.

5. Now create an iso-surface by selecting the Visualize->Modules->IsoSurface
menu item. You will see a new IsoSurface node on the left and an
iso-contour of the scalar data on the scene. The iso-surface is colored
as per the particular iso-value chosen. Experiment with the settings
of this module.

6. To produce meaningful visualizations you need to know what each
color means. To display this legend on the scene, click on the Mod-
ules node on the tree view and on the object editor activate the Show
scalar bar check-box. This will show you a legend on the TVTK
scene. The legend can be moved around on the scene by clicking on
it and dragging on it. It can also be resized by clicking and dragging
on its edges. You can change the nature of the color-mapping by
choosing various options on the object editor.

7. Create a simple“grid plane”to obtain an idea of the actual points on
the grid. This can be done using the GridPlane module, and created
via the Visualize->Modules->GridPlane menu item.

8. You can delete a particular module by right clicking on it and choos-

8

ing delete. Try this on the GridPlane module. Try the other right
click menu options as well.

9. Experiment with the ContourGridPlane module and also the Scalar-
CutPlane module a little.

The ScalarCutPlane module features a very powerful feature called
3D widgets. On the TVTK scene window you will see a cut plane
that slices through your data showing you colors representing your
data. This cut plane will have a red outline and an arrow sticking
out of it. You can click directly on the cut plane and move it by
dragging it. Click on the arrow head to rotate the plane. You can
also reset its position by using the editor window for the scalar cut
plane.

10. You can save the visualization to an image produced by clicking on
the little save icon on the TVTK scene or via any of the options on
the File->Save Scene As menu.

You should have a visualization that looks something like the one shown below.

The nice thing about mayavi is that although in this case all of the above was done
using the user interface, all of it can be done using pure Python scripts as well. More

9

details on this are available in the Scripting MayaVi section.
Opening data files and starting up modules can also be done from the command line.

For example we could simply have done:

$ mayavi2 -d /path/to/heart.vtk -m Outline -m IsoSurface \
> -m GridPlane -m ScalarCutPlane

More details are available in the Command line arguments section.

fire_ug.vtu example

Like heart.vtk, the fire_ug.vtu example dataset is available in the examples/data
directory. This dataset is an unstructured grid stored in a VTK XML file. It represents
a room with a fire in one corner. A simulation of the fluid flow generated by this fire was
performed and the resulting data at a particular instant of time is stored in the file. The
dataset was provided by Dr. Philip Rubini, who at the time was at Cranfield University.
A VRML file (room_vis.wrl) is also provided to show the context of the room in which
the fire is taking place.

1. With mayavi2 started, select File->Open->VTK XML file to load
the data. Again, you will see a node on the tree view on the left but
nothing on the TVTK scene. This dataset contains different scalars
and vectors in the same data file. If you select the VTK XML file
... node on the left you will see a drop list of all the scalars, vectors
etc. in this data file. Select any that you wish to view.

2. Create an outline of the data as described earlier using an Outline
module. View an iso-surface of the data by creating an IsoSurface
module. Also experiment with the ScalarCutPlane module.

3. Show the scalar bar that represents the color mapping (via a Look up
table that maps scalar values to colors) by clicking on the Modules
and enabling the Show scalar bar. Experiment with the different
color maps provided by default.

4. Now click on the VTK XML file ... and select different scalar values
to see how the data has changed. Your legend should automatically
update when the scalar value is changed.

5. This data also features vectors. The scalar data has u, v and w but
not the magnitude of the velocity. Lets say we’d like to be able to
view iso-contours of the magnitude of the velocity. To do this lets
use the ExtractVectorNorm filter. This is created by choosing the
Visualize->Filters->Extract Vector Norm menu.

6. If you now create a ScalarCutPlane, you will see a new Modules
node under the ExtractVectorNorm node. This scalar cut plane is
displaying colors for the velocity magnitude that the filter has cre-
ated. You can drag the iso-surface module from the other Modules

10

node and drop it on this Modules node so that the IsoSurface gen-
erated is for the velocity magnitude and not for the scalars chosen
in the data.

Note that the view on the left represents a pipeline of the flow of
the data from source -> filter -> modules. Essentially the data flows
from the parent node down to the children nodes below it.

Now if you want to visualize something on a different “branch” of
the pipeline, lets say you want to view iso-surfaces of the tempera-
ture data you must first click on the modules or the source object
(the VTK XML File ... node) itself and then select the menu item.
When you select an item on the tree, it makes that item the current
object and menu selections made after that will in general create
new modules/filters below the current object.

7. You can filter “filtered data”. So select the ExtractVectorNorm node
to make it the active object. Now create a Threshold filter by se-
lecting Visualize->Filters->Threshold. Now set the upper and lower
thresholds on the object editor for the Threshold to something like
0.5 and 3.0. If you create a VectorCutPlane module at this point and
move the cut plane you should see arrows but only arrows that are
between the threshold values you have selected. Thus, you can create
pretty complicated visualization pipelines using this approach.

8. There are several vector modules. VectorCutPlane, Vectors, WarpVec-
torCutPlane and Streamlines. If you view streamlines then mayavi
will generate streamlines of vector data in your dataset. To view
streamlines of the original dataset you can click on the original Out-
line module (or the source) and then choose the Streamline menu
item. The streamline lets you move different type of seeds on screen
using 3D widgets. Seed points originating from these positions are
used to trace out the streamlines. Sphere, line and plane sources
may be used here to initialize the streamline seeds.

9. You can view the room in which the fire is taking place by opening
the VRML file by the File->Open->VRML2 file menu item and
selecting the room_vis.wrl file included with the data.

10. Once you setup a complex visualization pipeline and want to save it
for later experimentation you may save the entire visualization via
the File->Save Visualization menu. A saved file can be loaded later
using the File->Load Visualization menu item. This option is not
100% robust and is still experimental. Future versions will improve
this feature. However, it does work and can be used for the time
being.

Once again, the visualization in this case was created by using the user interface. It
is possible to script this entirely using Python scripts. A simple script demonstrating

11

several of the above modules is available in examples/streamline.py. This file may be
studied. It can be run either like so:

$ cd examples
$ python streamline.py

or so:

$ mayavi2 -x streamline.py

As can be seen from the example, it is quite easy to script mayavi to visualize data.
An image of a resulting visualization generated from this script is shown below.

Parametric surfaces example

Parametric surfaces are particularly handy if you are unable to find any data to play
with right away. Parametric surfaces are surfaces parametrized typically by 2 variables,
u and v. VTK has a bunch of classes that let users explore Parametric surfaces. This
functionality is also available in MayaVi. The data basically is a 2D surface embedded
in 3D. Scalar data is also available on the surface. More details on parametric surfaces
in VTK may be obtained from Andrew Maclean’s Parametric Surfaces document.

12

http://www.vtk.org/pdf/ParametricSurfaces.pdf

1. After starting mayavi2, create a simple Parametric surface source by
selecting File->Open->Create Parametric Surface source. Once you
create the data, you will see a new node on the MayaVi tree view
on the left that says ParametricSurface. Note that you will not see
anything visualized on the TVTK scene yet.

You can modify the nature of the parametric surface by clicking on
the node for the ParametricSurface source object.

2. To see an outline (a box) of the data, navigate to the Visualize-
>Modules menu item and select the Outline module. You will im-
mediately see a white box on the TVTK scene. You should also
see two new nodes on the tree view, one called Modules and one
underneath that called Outline.

3. You can change properties of the outline displayed by clicking on the
Outline node on the left. This will create an object editor window
on left bottom of the window (the object editor tab) below the
tree view. Play with the settings here and look at the results. If you
double-click a node on the left it will pop up the editor dialog rather
than show it in the embedded object editor.

4. To navigate the scene look at the section on Interaction with the
scene section for more details. Experiment with these.

5. To view the actual surface create a Surface module by selecting
Visualize->Modules->Surface. You can show contours of the scalar
data on this surface by clicking on the Surface node on the left and
switching on the Enable contours check-box.

6. To look at the color legend click on the Modules node on the tree
view and on the object editor activate the Show scalar bar check-
box. This will show you a legend on the TVTK scene. The legend
can be moved around on the scene by clicking on it and dragging
on it. It can also be resized by clicking and dragging on its edges.
You can change the nature of the color-mapping by choosing various
options on the object editor.

7. You can add as many modules as you like. Not all modules make
sense for all data. MayaVi does not yet grey out menu items and
options if they are invalid for the particular data chosen. This will
be implemented in the future. However making a mistake should not
in general be disastrous, so go ahead and experiment.

8. You may add as many data sources as you like. It is possible to
view two different parametric surfaces on the same scene. Whether
this makes sense or not is up to the user. You may also create
as many scenes you want to and view anything in those. You can
cut/paste/copy sources and modules between any nodes on the tree
view using the right click options.

9. To delete the Outline module say, right click on the Outline node

13

and select the Delete option. You may also want to experiment with
the other options.

10. You can save the rendered visualization to a variety of file formats
using the File->Save Scene As menu.

11. The visualization may itself be saved out to a file via the File->Save
Visualization menu and reloaded using the Load visualization menu.

Shown below is an example visualization made using the parametric source. Note that
the positioning of the different surfaces was effected by moving the actors on screen using
the actor mode of the scene via the ’a’ key. For more details on this see the section on
Interaction with the scene.

The examples detailed above should provide a good general idea of how to visualize
data with MayaVi2 and also an idea of its features and capabilities.

Using MayaVi

This chapter primarily concerns using the mayavi2 application. Some of the things men-
tioned here also apply when mayavi is scripted. We recommend that new users read this
chapter before going to the more advanced ones.

14

Command line arguments

The mayavi2 application features several useful command line arguments that are de-
scribed in the following section. These options are described in the mayavi2 man page
as well.

MayaVi can be run like so:

mayavi2 [options] [args]

Where arg1, arg2 etc. are optional file names that correspond to saved MayaVi2
visualizations (filename.mv2) or MayaVi2 scripts (filename.py). If no options or ar-
guments are provided mayavi will start up with a default blank scene.

The options are:

-h This prints all the available command line options and exits. Also available
through --help.

-V This prints the MayaVi version on the command line and exits. Also
available through --version.

-z file_name

This loads a previously saved MayaVi2 visualization. Also available through
--viz file name or --visualization file name.

-d vtk_file Opens a (legacy or XML) VTK file (*.vt*) passed as the argument. Also
available through --vtk.

-p plot3d_xyz_file

This opens a PLOT3D co-ordinate file passed as the argument. The
plot3d-xyz-file must be a PLOT3D single block co-ordinate file. Also avail-
able through --plot3d-xyz.

-q plot3d_q_file

This opens a PLOT3D (single block) solution file passed as the argument.
Please note that this option must always follow a -q or --plot3d-xyz option.
Also available through --plot3d-q.

-w vrml-file

Imports a VRML2 scene given an appropriate file. Also available through
--vrml.

-3 threed-studio-file

Imports a 3D Studio scene given an appropriate file. Also available through
--3ds.

-m module-name

A module is an object that actually visualizes the data. The given module-name
is loaded in the current ModuleManager. The module name must be a valid
one if not you will get an error message.
If a module is specified as package.sub.module.SomeModule then the
module (‘‘SomeModule) is imported from package.sub.module. Stan-
dard modules provided with mayavi2 do not need the full path specifica-
tion. For example:

15

mayavi2 -d data.vtk -m Outline -m m2_user_modules.TestModule
In this example Outline is a standard module and m2_user_modules.TestModule
is some user defined module. Also available through --module.

-f filter-name

A filter is an object that filters out the data in some way or the other.
The given filter-name is loaded with respect to the current source/filter
object. The filter name must be a valid one if not you will get an error
message.
If the filter is specified as package.sub.filter.SomeFilter then the
filter (‘‘SomeFilter) is imported from package.sub.filter. Stan-
dard modules provided with mayavi2 do not need the full path specifica-
tion. For example:

mayavi2 -d data.vtk -f ExtractVectorNorm -f m2_user_filters.TestFilter
In this example ExtractVectorNorm is a standard filter and m2_user_filters.TestFilter
is some user defined filter. Also available through --filter.

-M Starts up a new module manager on the MayaVi pipeline. Also available
through --module-mgr.

-n Creates a new window/scene. Any options passed after this will
apply to this newly created scene. Also available through --new-
window.

-x script-file

This executes the given script in a namespace where we guarantee that
the name ’mayavi’ is MayaVi’s script instance -- just like in the embedded
Python interpreter. Also available through --exec.

Note that -x or --exec uses execfile, so this can be dangerous if the script does something
nasty!

It is important to note that mayavi’s command line arguments are processed
sequentially in the same order they are given. This allows users to do interesting things.

Here are a few examples of the command line arguments:

$ mayavi2 -d heart.vtk -m Axes -m Outline -m GridPlane \
> -m ContourGridPlane -m IsoSurface

$ mayavi2 -d fire_ug.vtu -m Axes -m Outline -m VectorCutPlane \
> -f MaskPoints -m Glyph

In the above examples, heart.vtk and fire_ug.vtu VTK files can be found in the
examples/data directory in the source. They may also be installed on your computer
depending on your particular platform.

General layout of UI

When the mayavi2 application is started it will provide a user interface that looks some-
thing like the figure shown below.

16

Figure of MayaVi’s initial UI window.

The UI features several sections described below.

Menus
The menus let you open files, load modules, set preferences etc.

The MayaVi engine tree view

This is a tree view of the mayavi pipeline.
• Right click a tree node to rename, delete, copy the objects.
• Left click on a node to edit its properties on the object editor

below the tree.
• It is possible to drag the nodes around on the tree. For exam-

ple it is possible to drag and move a module from one set of
Modules to another, or to move a visualization from one scene
to another.

The object editor
This is where the properties of mayavi pipeline objects can be changed
when an object on the engine’s pipeline is clicked.

TVTK scenes

17

This is where the visualization of the data happens. One can interact with
this scene via the mouse and the keyboard. More details are in the following
sections.

Python interpreter
The built-in Python interpreter that can be used to script mayavi and do
other things. You can drag nodes from the mayavi tree and drop them on
the interpreter and then script it!

Logger
Application log messages may be seen here.

MayaVi’s UI layout is highly configurable:

• the line in-between the sections can be dragged to resize particular
views.

• most of the “tabs” on the widgets can be dragged around to move them
anywhere in the application.

• Each view area (the mayavi engine view, object editor, python shell and
logger) can all be disabled and enabled at will using the View menu by
toggling the views on and off.

Each time you change the appearance of mayavi it is saved and the next time you
start up the application it will have the same configuration. In addition, you can save
different layouts into different “perspectives” using the View->Perspectives menu item.

Shown below is a specifically configured mayavi user interface view. In this view the
size of the various parts are changed. The Python shell is activated by default.

18

Figure of MayaVi’s UI after being configured by a user.

Interaction with the scene

The TVTK scenes on the UI can be closed by clicking on the little ’x’ icon on the tab.
Each scene features a toolbar that supports various features:

• Buttons to set the view to view along the positive or negative X, Y and
Z axes or obtain an isometric view.

• A button to turn on parallel projection instead of the default perspec-
tive projection. This is particularly useful when one is looking at 2D
plots.

• A button to turn on an axes to indicate the x, y and z axes.

• A button to turn on full-screen viewing. Note that once full-screen mode
is entered one must press ’q’ or ’e’ to get back a normal window.

• A button to save the scene to a variety of image formats. The image
format to use is determined by the extension provided for the file.

The primary means to interact with the scene is to use the mouse and keyboard.

19

Mouse interaction

There are two modes of mouse interaction:

• Camera mode: the default, where the camera is operated on with mouse
moves. This mode is activated by pressing the ’c’ key.

• Actor mode: in this mode the mouse actions operate on the actor the
mouse is currently above. This mode is activated by pressing the ’a’
key.

The view on the scene can be changed by using various mouse actions. Usually these
are accomplished by holding down a mouse button and dragging.

• holding the left mouse button down and dragging will rotate the cam-
era/actor in the direction moved.

– Holding down “SHIFT” when doing this will pan the
scene -- just like the middle button.

– Holding down“CONTROL”will rotate about the cam-
era’s focal point.

– Holding down “SHIFT” and “CONTROL” and drag-
ging up will zoom in and dragging down will zoom
out. This is like the right button.

• holding the right mouse button down and dragging upwards will zoom
in (or increase the actors scale) and dragging downwards will zoom out
(or reduce scale).

• holding the middle mouse button down and dragging will pan the scene
or translate the object.

• Rotating the mouse wheel upwards will zoom in and downwards will
zoom out.

Keyboard interaction

The scene supports several features activated via keystrokes. These are:

• ’3’: Turn on/off stereo rendering. This may not work if the ’stereo’
preference item is not set to True.

• ’a’: Use actor mode for mouse interaction instead of camera mode.

• ’c’: Use camera mode for mouse interaction instead of actor mode.

• ’e’/’q’: Exit full-screen mode.

• ’f’: Move camera’s focal point to current mouse location. This will move
the camera focus to center the view at the current mouse position.

• ’j’: Use joystick mode for the mouse interaction. In joystick mode the
mouse somewhat mimics a joystick. For example, holding the mouse
left button down when away from the center will rotate the scene.

20

• ’l’: Configure the lights that are illumining the scene. This will pop-up
a window to change the light configuration.

• ’p’: Pick the data at the current mouse point. This will pop-up a window
with information on the current pick. The UI will also allow one to
change the behavior of the picker to pick cells, points or arbitrary points.

• ’r’: Reset the camera focal point and position. This is very handy.

• ’t’: Use trackball mode for the mouse interaction. This is the default
mode for the mouse interaction.

• ’=’/’+’: Zoom in.

• ’-’: Zoom out.

• ’left’/’right’/’up’/’down’ arrows: Pressing the left, right, up and down
arrow let you rotate the camera in those directions. When “SHIFT”
modifier is also held down the camera is panned.

The embedded Python interpreter

The embedded Python interpreter offers extremely powerful possibilities. The interpreter
features command completion, automatic documentation tooltips and some multi-line
editing. In addition it supports the following features:

• The name mayavi is bound to the enthought.mayavi.script.Script

instance. This may be used to easily script mayavi.

• The name application is bound to the envisage application.

• If a Python file is opened via the File->Open File... menu item one
can edit it with a color syntax capable editor. To execute this script in
the embedded Python interpreter, the user may type Control-r on the
editor window. To save the file press Control-s. This is a very handy
feature when developing simple mayavi scripts.

• As mentioned earlier, one may drag and drop nodes from the MayaVi
engine tree view onto the Python shell. The object may then be scripted
as one normally would. A commonly used pattern when this is done is
the following:

>>> tvtk_scene_1

<enthought.mayavi.core.scene.Scene object at 0x9f4cbe3c>

>>> s = _

In this case the name s is bound to the dropped tvtk scene object. The
_ variable stores the last evaluated expression which is the dropped
object. Using tvtk_scene_1 will also work but is a mouthful.

Visualizing data

MayaVi modules can be used to visualize the data as described in the An overview of
MayaVi section and the Quick tour section. One needs to have some data or the other

21

loaded before a Module or Filter may be used. MayaVi supports several data file formats
most notably VTK data file formats. More information on this is available here in the
Creating data for MayaVi section.

Once data is loaded one can optionally use a variety of Filters to filter or modify the
data in some way or the other and then visualize the data using several Modules. The
Modules and Filters are briefly described in the subsequent sections.

Modules

Here is a list of the MayaVi modules along with a brief description.

Axes
Draws simple axes.

ContourGridPlane
A contour grid plane module. This module lets one take a slice of input
grid data and view contours of the data.

CustomGridPlane
A custom grid plane with a lot more flexibility than GridPlane module.

Glyph
Displays different types of glyphs oriented and colored as per scalar or
vector data at the input points.

GridPlane
A simple grid plane module.

ImagePlaneWidget
A simple module to view image data.

IsoSurface
A module that allows the user to make contours of input point data.

OrientationAxes
Creates a small axes on the side that indicates the position of the co-
ordinate axes and thereby marks the orientation of the scene. Requires
VTK-4.5 and above.

Outline
A module that draws an outline for the given data.

ScalarCutPlane
Takes a cut plane of any input data set using an implicit plane and plots
the data with optional contouring and scalar warping.

SliceUnstructuredGrid
This module takes a slice of the unstructured grid data and shows the cells
that intersect or touch the slice.

Streamline
Allows the user to draw streamlines for given vector data. This supports
various types of seed objects (line, sphere, plane and point seeds). It also

22

allows the user to draw ribbons or tubes and further supports different
types of interactive modes of calculating the streamlines.

StructuredGridOutline
Draws a grid-conforming outline for structured grids.

Surface
Draws a surface for any input dataset with optional contouring.

Text
This module allows the user to place text on the screen.

VectorCutPlane
Takes an arbitrary slice of the input data using an implicit cut plane and
places glyphs according to the vector field data. The glyphs may be colored
using either the vector magnitude or the scalar attributes.

Vectors
Displays different types of glyphs oriented and colored as per vector data
at the input points. This is merely a convenience module that is entirely
based on the Glyph module.

Volume
The Volume module visualizes scalar fields using volumetric visualization
techniques.

WarpVectorCutPlane
Takes an arbitrary slice of the input data using an implicit cut plane and
warps it according to the vector field data. The scalars are displayed on
the warped surface as colors.

Filters

Here is a list of the MayaVi Filters.

CellToPointData
Transforms cell attribute data to point data by averaging the cell data
from the cells at the point.

Delaunay2D
Performs a 2D Delaunay triangulation.

Delaunay3D
Performs a 3D Delaunay triangulation.

ExtractGrid
Allows a user to select a part of a structured grid.

ExtractUnstructuredGrid
Allows a user to select a part of an unstructured grid.

ExtractVectorNorm
Computes the norm (Euclidean) of the input vector data (with optional
scaling between [0, 1]). This is useful when the input data has vector input
but no scalar data for the magnitude of the vectors.

23

MaskPoints
Selectively passes the input points downstream. This can be used to sub-
sample the input points. Note that this does not pass geometry data, this
means all grid information is lost.

PointToCellData
Does the inverse of the CellToPointData filter.

PolyDataNormals
Computes normals from input data. This gives meshes a smoother appear-
ance. This should work for any input dataset. Note: this filter is called
“Compute Normals” in MayaVi2 GUI (Visualize/Filters/Compute Nor-
mals).

Threshold
A simple filter that thresholds on input data.

TransformData
Performs a linear transformation to input data.

WarpScalar
Warps the input data along a particular direction (either the normals or a
specified direction) with a scale specified by the local scalar value. Useful
for making carpet plots.

WarpVector
Warps the input data along a the point vector attribute scaled as per a
scale factor. Useful for showing flow profiles or displacements.

Scripting MayaVi

As elaborated in the Quick tour section, mayavi can be scripted from Python in order
to visualize data. MayaVi2 was designed from the ground up to be highly scriptable.
Everything that can be done from the user interface can be achieved using Python
scripts.

If you are not looking to script mayavi itself but looking for quick ways to get your
visualization done with simple code you may want to check out mayavi’s mlab module.
This is described in more detail in the Using mlab section.

To best understand how to script mayavi, a reasonable understanding of the mayavi
internals is necessary. The following sections provides an overview of the basic design
and objects in the mayavi pipeline. Subsequent sections consider specific example scripts
that are included with the mayavi sources that illustrate the ideas.

MayaVi2 uses Traits and TVTK internally. Traits in many ways changes the way we
program. So it is important to have a good idea of Traits in order to understand mayavi’s
internals. If you are unsure of traits it is a good idea to get a general idea about traits
now. Trust me, your efforts learning Traits will not be wasted!

24

https://svn.enthought.com/enthought/wiki/Traits
https://svn.enthought.com/enthought/wiki/TVTK
https://svn.enthought.com/enthought/wiki/Traits

Design Overview

This section provides a brief introduction to mayavi’s internal architecture.
The“big picture”of a visualization in mayavi is that an Engine (enthought.mayavi.engine.Engine)

object manages the entire visualization. The Engine manages a collection of Scene
(enthought.mayavi.core.scene.Scene) objects. In each Scene, a user may have cre-
ated any number of Source (enthought.mayavi.core.source.Source) objects. A Source
object can further contain any number of Filters (enthought.mayavi.core.filter.Filter)
or ModuleManager (enthought.mayavi.core.module_manager.ModuleManager) objects.
A Filter may contain either other filters or ModuleManagers. A ModuleManager man-
ages any number of Modules. The figure below shows this hierarchy in a graphical form.

Illustration of the various objects in the mayavi pipeline.

This hierarchy is precisely what is seen in the MayaVi tree view on the UI. The UI
is therefore merely a graphical representation of this internal world-view. A little more
detail on these objects is given below. For even more details please refer to the sources.

All objects in the mayavi pipeline feature start and stop methods. The reasoning
for this is that any object in mayavi is not usable (i.e. it may not provide any outputs)
unless it has been started. Similarly the stop method “deactivates” the object. This

25

is done because mayavi is essentially driving VTK objects underneath. These objects
require inputs in order to do anything useful. Thus, an object that is not connected to
the pipeline cannot be used. For example, consider an IsoSurface module. It requires
some data in order to contour anything. Thus, the module in isolation is completely
useless. It is usable only when it is added to the mayavi pipeline. When an object is
added to the pipeline, its inputs are setup and its start method is called automatically.
When the object is removed from the pipeline its stop method is called automatically.

Apart from the Engine object, all other objects in the mayavi pipeline feature a scene
trait which refers to the current enthought.pyface.tvtk.tvtk_scene.TVTKScene in-
stance that the object is associated with. The objects also feature an add_child method
that lets one build up the pipeline by adding “children” objects. The add_child method
is “intelligent” and will try to appropriately add the child in the right place.

Here is a brief description of the key objects in the mayavi pipeline.

Engine

The MayaVi engine is defined in the enthought.mayavi.engine module.
• It possesses a scenes trait which is a Trait List of Scene

objects.
• Features several methods that let one add a Filter/Source/Module

instance to it. It allows one to create new scenes and delete
them. Also has methods to load and save the entire visu-
alization.

• The EnvisageEngine defined in the enthought.mayavi.envisage_engine
module is a subclass of Engine and is the one used in the
mayavi2 application. The Engine object is not abstract
and itself perfectly usable. It is useful when users do not
want to use Envisage but still desire to use mayavi for
visualization.

Scene

Defined in the enthought.mayavi.core.scene module.
• scene attribute: manages a TVTKScene (enthought.pyface.tvtk.tvtk_scene)

object which is where all the rendering occurs.
• The children attribute is a List trait that manages a

list of Source objects.

PipelineBase

Defined in the enthought.mayavi.core.pipeline_base module. Derives
from Base which merely abstracts out common functionality. The PipelineBase
is the base class for all objects in the mayavi pipeline except the Scene

and Engine (which really isn’t in the pipeline but contains the pipeline).
• This class is characterized by two events, pipeline_changed

and data_changed. These are Event traits. They deter-
mine when the pipeline has been changed and when the
data has changed. Therefore, if one does:

object.pipeline_changed = True

26

https://svn.enthought.com/enthought/wiki/Envisage

then the pipeline_changed event is fired. Objects down-
stream of object in the pipeline are automatically setup
to listen to events from an upstream object and will call
their update_pipeline method. Similarly, if the data_changed
event is fired then downstream objects will automatically
call their update_data methods.

• The outputs attribute is a trait List of outputs produced
by the object.

Source

Defined in the enthought.mayavi.core.source module. All the file read-
ers, Parametric surface etc. are subclasses of the Source class.

• Contains the rest of the pipeline via its children trait.
This is a List of either Modules or other Filters.

• The outputs attribute is a trait List of outputs produced
by the source.

Filter

Defined in the enthought.mayavi.core.filter module. All the Filters

described in the Filters section are subclasses of this.
• Contains the rest of the pipeline via its children trait.

This is a List of either Modules or other Filters.
• The inputs attribute is a trait List of input data objects

that feed into the filter.
• The outputs attribute is a trait List of outputs produced

by the filter.
• Also features the three methods:

– setup_pipeline: used to create the underlying
TVTK pipeline objects if needed.

– update_pipeline: a method that is called when
the upstream pipeline has been changed, i.e. an
upstream object fires a pipeline_changed event.

– update_data: a method that is called when the
upstream pipeline has not been changed but the
data in the pipeline has been changed. This hap-
pens when the upstream object fires a data_changed
event.

ModuleManager

Defined in the enthought.mayavi.core.module_manager module. This
object is the one called Modules in the tree view on the UI. The main pur-
pose of this object is to manage Modules and share common data between
them. All modules typically will use the same lookup table (LUT) in order
to produce a meaningful visualization. This lookup table is managed by
the module manager.

• The source attribute is the Source or Filter object that

27

is the input of this object.
• Contains a list of Modules in its children trait.
• The scalar_lut_manager attribute is an instance of a
LUTManager which basically manages the color mapping
from scalar values to colors on the visualizations. This is
basically a mapping from scalars to colors.

• The vector_lut_manager attribute is an instance of a
LUTManager which basically manages the color mapping
from vector values to colors on the visualizations.

• The class also features a lut_data_mode attribute that
specifies the data type to use for the LUTs. This can
be changed between ’auto’, ’point data’ and ’cell data’.
Changing this setting will change the data range and name
of the lookup table/legend bar. If set to ’auto’ (the de-
fault), it automatically looks for cell and point data with
point data being preferred over cell data and chooses the
one available. If set to ’point data’ it uses the input point
data for the LUT and if set to ’cell data’ it uses the input
cell data.

Module

Defined in the enthought.mayavi.core.module module. These objects
are the ones that typically produce a visualization on the TVTK scene.
All the modules defined in the Modules section are subclasses of this.

• The components attribute is a trait List of various reusable
components that are used by the module. These usually
are never used directly by the user. However, they are ex-
tremely useful when creating new modules. A Component

is basically a reusable piece of code that is used by various
other objects. For example, almost every Module uses a
TVTK actor, mapper and property. These are all “compo-
nentized” into a reusable Actor component that the mod-
ules use. Thus, components are a means to promote reuse
between mayavi pipeline objects.

• The module_manager attribute specifies the ModuleManager
instance that it is attached to.

• Like the Filter modules also feature the three methods:
– setup_pipeline: used to create the underlying

TVTK pipeline objects if needed.
– update_pipeline: a method that is called when

the upstream pipeline has been changed, i.e. an
upstream object fires a pipeline_changed event.

– update_data: a method that is called when the
upstream pipeline has not been changed but the

28

data in the pipeline has been changed. This hap-
pens when the upstream object fires a data_changed
event.

The following figures show the class hierarchy of the various objects involved.

The Engine object and its important attributes and methods.

This hierarchy depicts the Base object, the Scene, PipelineBase and the ModuleManager.

29

This hierarchy depicts the PipelineBase object, the Source, Filter, Module and the
Component.

Scripting the mayavi2 application

The mayavi2 application is implemented in the enthought.mayavi.scripts.mayavi2
module (look at the mayavi2.py file and not the mayavi2 script). This code handles the
command line argument parsing and runs the application.
mayavi2 is an Envisage application. It starts the Envisage application in its main

method. The code for this is in the enthought.mayavi.app module. Mayavi uses sev-
eral envisage plugins to build up its functionality. These plugins are defined in the
enthought.mayavi.plugin_definitions module. In this module there are two lists of
plugins defined, PLUGIN_DEFINITIONS and the NONGUI_PLUGIN_DEFINITIONS. The de-
fault application uses the former which produces a GUI that the user can use. If one uses
the latter (NONGUI_PLUGIN_DEFINITIONS) then the mayavi tree view, object editor and
menu items will not be available when the application is run. This allows a developer to
create an application that uses mayavi but does not show its user interface. An example
of how this may be done is provided in examples/nongui.py.

Scripting from the UI

When using the mayavi2 application, it is possible to script from the embedded Python
interpreter on the UI. On the interpreter the name mayavi is automatically bound to an
enthought.mayavi.script.Script instance that may be used to easily script mayavi.
This instance is a simple wrapper object that merely provides some nice conveniences
while scripting from the UI. It has an engine trait that is a reference to the running
mayavi engine.

As described in The embedded Python interpreter section, one can always drag a
mayavi object from the tree and drop it on the interpreter to script it directly.

One may select the File->Open File... menu to open an existing Python file in the

30

https://svn.enthought.com/enthought/wiki/Envisage

text editor, or choose the File->New File menu to create a new file. The text editor is
Python-aware and one may write a script assuming that the mayavi name is bound to
the Script instance as it is on the shell. To execute this script one can press Control-r
as described earlier. Control-s will save the script.

The nice thing about this kind of scripting is that if one scripts something on the
interpreter or on the editor, one may save the contents to a file, say script.py and then
the next time mayavi run it like so:

$ mayavi2 -x script.py

This will execute the script for automatically. The name mayavi is available to the
script and is bound to the Script instance. This is very convenient. It is possible to have
mayavi execute multiple scripts. For example:

$ mayavi2 -d foo.vtk -m IsoSurface -x setup_iso.py -x script2.py

will load the foo.vtk file, create an IsoSurface module, then run setup_iso.py and
then run script2.py.

There are several scripts in the mayavi examples directory that should show how this
can be done. The examples/README.txt contains some information on the recommended
ways to script.

Scripting from IPython

It is possible to script MayaVi using IPython. IPython will have to be invoked with the
-wthread command line option in order to allow one to interactively script the mayavi
application:

$ ipython -wthread

To start a visualization do the following:

from enthought.mayavi.app import main
Note, this does not process any command line arguments.
mayavi = main()
’mayavi’ is the mayavi Script instance.

It is also possible to use mlab (see Using mlab) for this purpose:

from enthought.mayavi.tools import mlab
f = mlab.figure() # Returns the current scene.
mayavi = mlab.get_mayavi() # Returns the Script instance.

With this it should be possible to script mayavi just the way it is done on the embedded
interpreter or on the text editor.

31

http://ipython.scipy.org

An example

Here is an example script that illustrates various features of scripting mayavi:

Create a new mayavi scene.
mayavi.new_scene()

Get the current active scene.
s = mayavi.engine.current_scene

Read a data file.
from enthought.mayavi.sources.api import VTKXMLFileReader
d = VTKXMLFileReader()
You must specify the full path to the data here.
d.initialize(’fire_ug.vtu’)
mayavi.add_source(d)

Import a few modules.
from enthought.mayavi.modules.api import Outline, IsoSurface, Streamline

Show an outline.
o = Outline()
mayavi.add_module(o)
o.actor.property.color = 1, 0, 0 # red color.

Make a few contours.
iso = IsoSurface()
mayavi.add_module(iso)
iso.contour.contours = [450, 570]
Make them translucent.
iso.actor.property.opacity = 0.4
Show the colormapping.
iso.module_manager.scalar_lut_manager.show_scalar_bar = True

A streamline.
st = Streamline()
mayavi.add_module(st)
Position the seed center.
st.seed.widget.center = 3.5, 0.625, 1.25
st.streamline_type = ’tube’

Save the resulting image.
s.scene.save(’test.png’)

32

Make an animation:
for i in range(36):

Rotate the camera by 10 degrees.
s.scene.camera.azimuth(10)

Resets the camera clipping plane so everything fits and then
renders.
s.scene.reset_zoom()

Save the scene.
s.scene.save_png(’anim%d.png’%i)

Sometimes, given a mayavi Script instance or Engine, it is handy to be able to
navigate to a particular module/object. In the above this could be achieved as follows:

x = mayavi.engine.scenes[0].children[0].children[0].children[-1]
print x

In this case x will be set to the Streamline instance that we just created.
There are plenty of examples illustrating various things in the examples directory.

These are all fairly well documented.
In particular, the standalone.py example illustrates how one can script mayavi with-

out using the envisage application at all. The offscreen.py example illustrates how this
may be done using off screen rendering (if supported by your particular build of VTK).
examples/README.txt contains some information on the recommended ways to script

and some additional information.

Using mlab

Mlab was originally written by the author of this document to provide a simple way
for users to do visualization using just a few lines of code. It has since been completely
rewritten by Gaël Varoquaux. The idea is to provide quick one-liners as done in the
matplotlib pylab interface with an emphasis on 3D visualization using mayavi2. This
allows users to perform quick 3D visualization while being able to use mayavi’s powerful
features.

The best way to use mayavi’s mlab is to use IPython. IPython will have to be invoked
with the -wthread command line option like so:

$ ipython -wthread

Once started, here is a pretty example showing a spherical harmonic:

from numpy import *
from enthought.mayavi.tools import mlab
Create the data.
dphi, dtheta = pi/250.0, pi/250.0

33

http://matplotlib.sf.net
http://ipython.scipy.org

[phi,theta] = mgrid[0:pi+dphi*1.5:dphi,0:2*pi+dtheta*1.5:dtheta]
m0 = 4; m1 = 3; m2 = 2; m3 = 3; m4 = 6; m5 = 2; m6 = 6; m7 = 4;
r = sin(m0*phi)**m1 + cos(m2*phi)**m3 + sin(m4*theta)**m5 + cos(m6*theta)**m7
x = r*sin(phi)*cos(theta)
y = r*cos(phi)
z = r*sin(phi)*sin(theta);
View it.
f = mlab.figure()
s = mlab.surf(x, y, z)

Bulk of the code in the above example is to create the data. One line suffices to
visualize it. This produces the following visualization in a mayavi window.

The data and visualization modules are all created by the single command surf in the
above. One can now change the visualization using mayavi as described in other parts
of this manual.

This is just a sampling of what you can do with mlab. More documentation on mlab
is available here:

https://svn.enthought.com/enthought/attachment/wiki/MayaVi/mlab.pdf

34

https://svn.enthought.com/enthought/attachment/wiki/MayaVi/mlab.pdf

Using the mayavi envisage plugins

The mayavi related plugin definitions to use are:

• mayavi_plugin_definition.py

• mayavi_ui_plugin_definition.py

These are in the enthought.mayavi package. To see an example of how to use this see
the enthought.mayavi.plugin_definitions module and the enthought.mayavi.app
module.

If you are writing Envisage plugins for an application and desire to use the mayavi
plugins from your plugins/applications then it is important to note that mayavi creates
three application objects for your convenience. These are:

• enthought.mayavi.services.IMAYAVI: This is an enthought.mayavi.script.Script

instance that may be used to easily script mayavi. It is a simple wrap-
per object that merely provides some nice conveniences while scripting
from the UI. It has an engine trait that is a reference to the running
mayavi engine.

• enthought.mayavi.services.IMAYAVI_ENGINE: This is the running
mayavi engine instance.

• enthought.mayavi.services.IMAYAVI_ENGINE_VIEW: This is the view
of the engine and is only exposed if the mayavi_ui_plugin_definition.py
is used.

A simple example that demonstrates the use of the mayavi plugin in an envisage
application is included in the examples/explorer directory. This may be studied to
understand how you may do the same in your envisage applications.

Creating data for MayaVi

This section of the user guide will be improved later. For now, the following two pre-
sentations best describe how one can create data objects or data files for MayaVi and
TVTK.

• Presentation on TVTK and MayaVi2 for course at IIT Bombay

https://svn.enthought.com/enthought/attachment/wiki/MayaVi/tvtk mayavi2.pdf

This presentation provides information on graphics in general, 3D data
representation, creating VTK data files, creating datasets from numpy
in Python, and also about mayavi.

• Presentation on making TVTK datasets using numpy arrays made for
SciPy07.

https://svn.enthought.com/enthought/attachment/wiki/MayaVi/tvtk datasets.pdf

This presentation focuses on creating TVTK datasets using numpy ar-
rays.

35

https://svn.enthought.com/enthought/attachment/wiki/MayaVi/tvtk_mayavi2.pdf
https://svn.enthought.com/enthought/attachment/wiki/MayaVi/tvtk_datasets.pdf

There are several examples in the mayavi sources that highlight the creation of the
most important datasets from numpy arrays. These may be found in the examples
directory. Specifically they are:

• polydata.py: Demonstrates how to create Polydata datasets from numpy
arrays and visualize them in mayavi.

• structured_points2d.py: Demonstrates how to create a 2D struc-
tured points (or image data) dataset from numpy arrays and visualize
them in mayavi. This is basically a square of equispaced points.

• structured_points3d.py: Demonstrates how to create a 3D struc-
tured points (or image data) dataset from numpy arrays and visualize
them in mayavi. This is a cube of points that are regularly spaced.

• structured_grid.py: Demonstrates the creation and visualization of
a 3D structured grid.

• unstructured_grid.py: Demonstrates the creation and visualization
of an unstructured grid.

These scripts may be run like so:

$ mayavi2 -x structured_grid.py

or better yet, all in one go like so:

$ mayavi2 -x polydata.py -x structured_points2d.py \
> -x structured_points3d.py -x structured_grid.py -x unstructured_grid.py

Tips and Tricks

Below are a few common tips and tricks.

Customizing mayavi2

See the examples/mayavi_custom_ui.py example that documents and shows how the
UI of mayavi2 can be modified. The module documents how this can be done and provides
a simple example.

Off screen rendering

Often you write mayavi scripts to render a whole batch of images to make an animation
or so and find that each time you save an image, mayavi “raises” the window to make it
the active window thus disrupting your work. This is needed since VTK internally grabs
the window to make a picture. To get around this behavior you may click on the scene
and set the “Off screen rendering” option on. Or from a script:

mayavi.engine.current_scene.scene.off_screen_rendering = True

36

This will stop raising the window. However, this may not be enough. If you are using
win32 then off screen rendering should work well out of the box. On Linux and the Mac
you will need VTK-5.1 (currently from CVS) to get this working properly.

If upgrading VTK is a problem there is another approach for any OS that supports
X11. This option should work irrespective of the version of VTK you are using. The idea
is to use the virtual framebuffer X server for X11 like so:

• Make sure you have the xvfb package installed.

• Create the virtual framebuffer X server like so:

xvfb :1 -screen 0 1280x1024x24

This creates the display“:1”and creates a screen of size 1280x1024 with
24 bpp. For more options check your xvfb man page.

• Export display to :1 like so (on bash):

$ export DISPLAY=:1

• Now run your mayavi script. It should run uninterrupted on this X
server and produce your saved images.

This probably will have to be fine tuned to suit your taste.
Note that if you want to use mayavi without the envisage UI or even a traits UI (i.e.

with a pure TVTK window) and do off screen rendering with Python scripts you may
be interested in the examples/offscreen.py example. This simple example shows how
you can use MayaVi without using Envisage or the MayaVi envisage application and
still do off screen rendering.

Miscellaneous

Tests for MayaVi2

MayaVi features a few simple tests. These are in the tests directory. The testing is per-
formed using the same technique that VTK employs. Basically, a visualization is scripted
and the resulting visualization window is captured and compared with an existing test
image. If there are differences in the images then there is an error, if not the test passes.
The test cases are themselves relatively simple and the magic of the actual generation
of test images etc. is all in the tests/common.py module.

To run a test you may do something like the following:

$ cd tests
$ python test_array_source.py

Getting help

Most of the user and developer discussion for mayavi2 occurs on the Enthought OSS
developers mailing list (enthought-dev@mail.enthought.com). This list is also available
via gmane from here: http://dir.gmane.org/gmane.comp.python.enthought.devel

37

http://www.vtk.org
mailto:enthought-dev@mail.enthought.com
http://dir.gmane.org/gmane.comp.python.enthought.devel

Discussion and bug reports are also sometimes sent to the mayavi-users mailing list
(MayaVi-users@lists.sourceforge.net). We recommend sending messages to the enthought-
dev list though.

The MayaVi web page: https://svn.enthought.com/enthought/wiki/MayaVi
is a trac page where one can also enter bug reports and feature requests.
If this manual, the mayavi web page and google are of no help feel free to post on the

enthought-dev mailing list for help.

Helping out

We are always on the lookout for people to help this project grow. Feel free to send us
patches -- these are best sent to the mailing list. Depending on your contributions we
might grant you SVN checkin privileges. Thanks!

38

mailto:MayaVi-users@lists.sourceforge.net
https://svn.enthought.com/enthought/wiki/MayaVi

	Vision
	Introduction
	Technical details

	Installation
	Requirements
	Eggs
	Introduction to Eggs

	The bleeding edge: SVN

	An overview of MayaVi
	Quick tour
	heart.vtk example
	fire_ug.vtu example
	Parametric surfaces example

	Using MayaVi
	Command line arguments
	General layout of UI
	Interaction with the scene
	Mouse interaction
	Keyboard interaction

	The embedded Python interpreter
	Visualizing data
	Modules
	Filters

	Scripting MayaVi
	Design Overview
	Scripting the mayavi2 application
	Scripting from the UI
	Scripting from IPython
	An example

	Using mlab
	Using the mayavi envisage plugins

	Creating data for MayaVi
	Tips and Tricks
	Customizing mayavi2
	Off screen rendering

	Miscellaneous
	Tests for MayaVi2
	Getting help
	Helping out

