
Traits UI User Guide
Lyn Pierce
Janet Swisher

Document Version 3

12-Sep-2007

© 2005, 2007 Enthought, Inc.

All Rights Reserved.

Redistribution and use of this document in source and derived forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source or derived format (for example, Portable Document Format or
Hypertext Markup Language) must retain the above copyright notice, this list of
conditions and the following disclaimer.

Neither the name of Enthought, Inc., nor the names of contributors may be used to
endorse or promote products derived from this document without specific prior written
permission.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

All trademarks and registered trademarks are the property of their respective owners.

Enthought, Inc.
515 Congress Avenue
Suite 2100
Austin TX 78701
1.512.536.1057 (voice)
1.512.536.1059 (fax)
http://www.enthought.com
info@enthought.com

mailto:info@enthought.com
http://www.enthought.com/

Table of Contents

1 Introduction ... 1
1.1 The Model-View-Controller (MVC) Design Pattern 1

1.1.1 The Model: HasTraits Subclasses and Objects 2
1.1.2 The View: View Objects .. 2
1.1.3 The Controller: Handler Subclasses and Objects 2

1.2 Structure of this Guide ... 3

2 Introduction to the View Object .. 4

3 The Building Blocks of a View .. 7
3.1 The Item Object ... 7

3.1.1 Subclasses of Item .. 10
3.2 The Group Object .. 10

3.2.1 Content of a Group .. 11
3.2.2 Group Attributes .. 11

4 Customizing a View ... 13
4.1 Specifying Window Type: the kind Attribute 13

4.1.1 Dialog Boxes: ‘modal’, ‘live’, ‘livemodal’, and
‘nonmodal’ ... 13

4.1.2 Wizards .. 14
4.1.3 Panels and Subpanels .. 14

4.2 Command Buttons: the buttons Attribute 15
4.3 Other View Attributes .. 17

5 Advanced View Concepts ... 18
5.1 Internal Views ... 18

5.1.1 Defining a Default View ... 19
5.1.2 Defining Multiple Views Within the Model 20

5.2 Separating Model and View: External Views 21
5.3 Displaying a View ... 22

5.3.1 configure_traits() .. 22
5.3.2 edit_traits() .. 22
5.3.3 ui() .. 23

5.4 The View Context ... 23
5.4.1 Multi-Object Views .. 24

12-Sep-2007 i

Traits UI User Guide

5.5 Include Objects .. 26

6 Controlling the Interface: the Handler ... 27
6.1 Backstage: Introducing the UIInfo Object 27
6.2 Writing Handler Methods ... 28

6.2.1 Overriding Standard Methods ... 28
6.2.2 Reacting to Trait Changes ... 30
6.2.3 Implementing Custom Window Commands 32

6.3 Assigning Handlers to Views .. 34
6.3.1 Binding a Singleton Handler to a View 34
6.3.2 Linking Handler and View at Edit Time 35
6.3.3 Creating a Default View Within a Handler 35

7 Introduction to Trait Editor Factories ... 37
7.1 Specifying an Alternate Trait Editor Factory 38

7.1.1 Initializing Editors ... 41
7.2 Specifying an Editor Style .. 41

7.2.1 The ‘simple’ Style ... 41
7.2.2 The ‘custom’ Style .. 42
7.2.3 The ‘text’ Style .. 43
7.2.4 The ‘readonly’ style ... 44
7.2.5 Using Editor Styles .. 44

8 The Predefined Trait Editor Factories ... 46
8.1 Basic Trait Editor Factories .. 46

8.1.1 ArrayEditor() .. 46
8.1.2 BooleanEditor() .. 48
8.1.3 ButtonEditor() ... 49
8.1.4 CheckListEditor() ... 50
8.1.5 CodeEditor() ... 51
8.1.6 Color Editors ... 52
8.1.7 CompoundEditor() .. 57
8.1.8 DirectoryEditor() .. 58
8.1.9 EnumEditor() .. 60
8.1.10 FileEditor() ... 61
8.1.11 FontEditor() .. 63
8.1.12 HTMLEditor() .. 64
8.1.13 ImageEnumEditor() ... 66
8.1.14 InstanceEditor() .. 68
8.1.15 KivaFontEditor() .. 71

ii 12-Sep-2007

Introduction

8.1.16 ListEditor() ... 72
8.1.17 NullEditor() ... 74
8.1.18 RangeEditor() .. 75
8.1.19 SetEditor() ... 77
8.1.20 ShellEditor() .. 78
8.1.21 TextEditor() ... 78
8.1.22 TupleEditor() ... 80

8.2 Advanced Trait Editors .. 81
8.2.1 CustomEditor() ... 81
8.2.2 KeyBindingEditor() .. 81
8.2.3 TableEditor() ... 84
8.2.4 TreeEditor() ... 90
8.2.5 DropEditor() ... 100
8.2.6 DNDEditor() ... 101
8.2.7 ValueEditor() .. 102

9 Advanced Editor Concepts .. 103
9.1 Interacting with an Editor Through the UI Object 103

9.1.1 Accessing Trait Editors Using Item IDs 103
9.1.2 Controlling Editor Status Using ‘enabled’ and

‘disabled’ .. 103
9.2 Defining a Custom Editor .. 103

9.2.1 Defining the Editor Factory .. 103
9.2.2 Defining the Editor .. 104

10 Miscellaneous Advanced Topics ... 105
10.1 The UI Object ... 105
10.2 The UIInfo Object Revisited .. 105
10.3 Defining a Custom Help Handler ... 105
10.4 Saving and Restoring User Preferences 105

10.4.1 Enabling User Preferences for a View 105

11 Tips, Tricks and Gotchas ... 107
11.1 Getting and Setting Model View Elements 107

11.1.1 trait_views() .. 107
11.1.2 trait_view() .. 108

 Appendix I: Glossary of Terms.. 109

 Appendix II: Editor Factories for Predefined Trait Factories..... 113

12-Sep-2007 iii

Traits UI User Guide

iv 12-Sep-2007

1 Introduction
This guide is designed to act as both tutorial and reference for
Traits UI, an open-source package built and maintained by
Enthought, Inc. The Traits UI package is a set of GUI (Graphical
User Interface) tools designed to complement Traits, another
Enthought open-source package that provides manifest typing,
validation, and change notification for Python. This guide is
intended for readers who are already moderately familiar with
Traits; those who are not may wish to refer to the Traits User
Manual for an introduction.

1.1 The Model-View-Controller
(MVC) Design Pattern

A common and well-tested approach to building end-user
applications is the MVC (“Model-View-Controller”) design pattern.
In essence, the MVC pattern the idea that an application should
consist of three separate entities: a model, which manages the data,
state, and internal (“business”) logic of the application; one or more
views, which format the model data into a graphical display with
which the end user can interact; and a controller, which manages the
transfer of information between model and view so that neither
needs to be directly linked to the other. In practice, particularly in
simple applications, the view and controller are often so closely
linked as to be almost indistinguishable, but it remains useful to
think of them as distinct entities.

The three parts of the MVC pattern correspond roughly to three
classes in the Traits and Traits UI packages.

• Model: HasTraits class (Traits package)
• View: View class (Traits UI package)
• Controller: Handler class (Traits UI package)

The remainder of this section gives an overview of these
relationships.

12-Sep-07 1

Traits UI User Guide

1.1.1 The Model: HasTraits Subclasses and
Objects

In the context of Traits, a model consists primarily of one or more
subclasses or instances of the HasTraits class, whose trait attributes
(typed attributes as defined in Traits) represent the model data. The
specifics of building such a model are outside the scope of this
manual; please see the Traits User Manual for further information.

1.1.2 The View: View Objects
A view for a Traits-based application is an instance of a class called,
conveniently enough, View. A View object is essentially a display
specification for a GUI window or panel. Its contents are defined in
terms of instances of two other classes: Item and Group.1 These
three classes are described in detail in Chapters 3 through 5 of this
manual; for the moment, it is important to note that they are all
defined independently of the model they are used to display.

Note that the terms “view” and “View” are distinct for the
purposes of this document. The former refers to the component of
the MVC design pattern; the latter is a Traits UI construct.

1.1.3 The Controller: Handler Subclasses
and Objects

The controller for a Traits-based application is defined in terms of
the Handler class.2 Specifically, the relationship between any given
View instance and the underlying model is managed by an instance
of the Handler class. For simple interfaces, the Handler can be
implicit. For example, none of the examples in Chapters 2 through
5 includes or requires any specific Handler code; they are managed
by a default Handler that performs the basic operations of window
initialization, transfer of data between GUI and model, and
window closing. Thus, a programmer new to Traits UI need not be

1 A third type of content object, Include, is discussed briefly in Chapter 5, but presently is
not commonly used.

2 Not to be confused with the TraitHandler class of the Traits package, which enforces
type validation.

2 12-Sep-2007

Traits UI User Guide

concerned with Handlers at all. Nonetheless, custom handlers can
be a powerful tool for building sophisticated application interfaces,
as discussed in Chapter 6.

1.2 Structure of this Guide
The intent of this guide is to present the capabilities of the Traits UI
package in usable increments, so that you can create and display
gradually more sophisticated interfaces from one chapter to the
next. Thus, Chapters 2 through 5 show how to construct and
display views from the simple to the elaborate, while leaving such
details as GUI logic and widget selection to system defaults.
Chapter 6 explains how to use the Handler class to implement
custom GUI behaviors, as well as menus and toolbars. Chapters 7
through 9 show how to control GUI widget selection by means of
trait editors. Chapters 10 and 11 cover miscellaneous additional
topics. Further reference materials, including a glossary of terms
and an API summary for the Traits UI classes covered in this
Guide, are located in the Appendices.

12-Sep-2007 3

Traits UI User Guide

2 Introduction to the View
Object

A simple way to edit (or simply observe) the attribute values of a
HasTraits object in a GUI window is to call the object’s
configure_traits()3 method. This method constructs and displays a
dialog box containing editable fields for each of the object’s trait
attributes. For example, the following sample code defines the
SimpleEmployee class, creates an object of that class, and constructs
and displays a GUI for the object:

Example 1: Using configure_traits()
Sample code to demonstrate configure_traits()
from enthought.traits.api import HasTraits, Str, Int
import enthought.traits.ui

class SimpleEmployee(HasTraits):
 first_name = Str
 last_name = Str
 department = Str

 employee_number = Str
 salary = Int

sam = SimpleEmployee()
sam.configure_traits()

Unfortunately, the resulting form simply displays the attributes of
the object sam in alphabetical order with little formatting, which is
seldom what is wanted:

3 If the code is being run from a program that already has a GUI defined, then use
edit_traits() instead of configure_traits(). These methods are discussed in more detail in
Section 5.4.

4 12-Sep-2007

Traits UI User Guide

Figure 1: User interface for Example 1

In order to control the layout of the interface, it is necessary to
define a View object. A View object is a template for a GUI window
or panel. In other words, a View specifies the content and
appearance of a TraitsUI window or panel display4.

For example, suppose you want to construct a GUI window that
shows only the first three attributes of a SimpleEmployee (e.g.,
because salary is confidential and the employee number should not
be edited). Furthermore, you would like to specify the order in
which those fields appear. You can do this by defining a View
object and passing it to the configure_traits() method:

Example 2: Using configure_traits() with a View object
Sample code to demonstrate configure_traits()
from enthought.traits.api import HasTraits, Str, Int
from enthought.traits.ui.api import View, Item
import enthought.traits.ui

class SimpleEmployee(HasTraits):
 first_name = Str
 last_name = Str
 department = Str
 employee_number = Str
 salary = Int

view1 = View(Item(name = 'first_name'),
 Item(name = 'last_name'),
 Item(name = 'department'))

sam = SimpleEmployee()
sam.configure_traits(view=view1)

The resulting window has the desired appearance:

4 A View can also specify window behavior to a limited extent; see Sections 3.1.5 and
3.2.3.

12-Sep-2007 5

Traits UI User Guide

Figure 2: User interface for Example 2

Chapters 3 through 5 explore the contents and capabilities of
Views. Refer to the Traits API Reference for details of the View class.

For the time being, all example code uses the configure_traits()
method; a detailed description of this and other techniques for
creating GUI displays from Views can be found in Section 5.3 on
page 22.

6 12-Sep-2007

Traits UI User Guide

3 The Building Blocks of a View
The contents of a View are specified primarily in terms of two basic
building blocks: Item objects (which, as suggested by Example 2,
correspond roughly to individual trait attributes), and Group
objects. A given View can contain one or more objects of either of
these types, which are specified as arguments to the View
constructor as in the case of the three Items in Example 2.

The remainder of this chapter describes the Item and Group classes.

3.1 The Item Object
The simplest building block of a View is the Item object. An Item
specifies a single interface widget, usually the display for a single
trait attribute of a HasTraits object. The content, appearance, and
behavior of the widget are controlled by means of the Item object’s
attributes, which are usually specified as keyword arguments to the
Item constructor, as in the case of name in Example 2.

The remainder of this section describes the attributes of the Item
object, grouped by categories of functionality. It is not necessary to
understand all of these attributes in order to create useful Items;
many of them can usually be left unspecified, as their default
values are adequate for most purposes. Indeed, as demonstrated by
earlier examples, simply specifying the name of the trait attribute to
be displayed is often enough to produce a usable result.

Table 1 lists the attributes of the Item class, organized by functional
categories. Refer to the Traits API Reference for details on the Item
class.

Table 1: Attributes of Item, by category
Category Attributes Description

Content • name
• object

These attributes specify the actual
data to be displayed by an item.
Because an Item is essentially a
template for displaying a single
trait, its name attribute is nearly
always specified. By contrast, it is
often not necessary to assign the

12-Sep-2007 7

Traits UI User Guide

Category Attributes Description

object attribute: its default value is
the literal string ‘object’, which is
assumed to represent the object
whose configure_traits() method is
using the View. In Example 2 on
page 5, the object attribute of all
three items is assumed to be
‘object’, which represents the
object sam. Scenarios where an
Item’s object attribute must be
explicitly assigned are described in
Chapter 5.

Display
format

• label
• resizable
• emphasized
• padding
• height
• width

In addition to specifying which
trait attributes are to be displayed,
you might need to adjust the
format of one or more of the
resulting widgets.
If an Item’s label attribute is
specified but not its name, the
value of label is displayed as a
simple, non-editable string. (This
feature can be useful for
displaying comments or
instructions in a Traits UI
window.)

Content
format

• format_str
• format_func

In some cases it can be desirable to
apply special formatting to a
widget’s contents rather than to
the widget itself. Examples of such
formatting might include
rounding a floating-point value to
two decimal places, or capitalizing
all letter characters in a license
plate number.

8 12-Sep-2007

Traits UI User Guide

Category Attributes Description

Widget
override

• editor
• style

These attributes override the
widget that is automatically
selected by Traits UI. These
relatively advanced options are
discussed in Chapters 7 through 9.

Visibility
and
status

• enabled_when
• visible_when
• defined_when

Use these attributes to create a
simple form of a dynamic GUI,
which alters the display in
response to changes in the data it
contains. More sophisticated
dynamic behavior can be
implemented using a custom
Handler (see Chapter 6).

User
help

• tooltip
• help
• help_id

These attributes provide guidance
to the user in using the user
interface. If the help attribute is
not defined for an Item, a system-
generated message is used instead.
The help_id attribute is ignored by
the default help handler, but can
be used by a custom help handler.

Unique
identifier

• id This option is needed only for
advanced Traits UI applications;
see Section 9.1 on page 103 for an
example of its use.
An id value can be used for
persisting user preferences about
the widget.

12-Sep-2007 9

Traits UI User Guide

3.1.1 Subclasses of Item
The Traits UI package defines the following subclasses of Item:

• Label
• Heading
• Spring

These classes are intended to help with the layout of Traits UI
View, and need not have a trait attribute associated with them. See
the Traits API Reference for details.

3.2 The Group Object
The preceding sections have shown how to construct windows that
display a simple vertical sequence of widgets using instances of the
View and Item classes. For more sophisticated interfaces, though, it
is often desirable to treat a group of data elements as a unit for
reasons that might be visual (e.g., placing the widgets within a
labeled border) or logical (activating or deactivating the widgets in
response to a single condition, defining group-level help text). In
Traits UI, such grouping is accomplished by means of the Group
object.

Consider the following enhancement to Example 2:

Example 3: Using configure_traits() with a View and a Group object
Sample code to demonstrate configure_traits()
from enthought.traits.api import HasTraits, Str, Int
from enthought.traits.ui.api import View, Item, Group
import enthought.traits.ui

class SimpleEmployee(HasTraits):
 first_name = Str
 last_name = Str
 department = Str

 employee_number = Str
 salary = Int

view1 = View(Group(Item(name = 'first_name'),
 Item(name = 'last_name'),
 Item(name = 'department'),
 label = 'Personnel profile',
 show_border = True))

10 12-Sep-2007

Traits UI User Guide

sam = SimpleEmployee()
sam.configure_traits(view=view1)

The resulting window shows the same widgets as before, but they
are now enclosed in a visible border with a text label:

Figure 3: User interface for Example 3

3.2.1 Content of a Group
The content of a Group object is specified exactly like that of a View
object. In other words, one or more Item or Group objects are given
as arguments to the Group constructor, e.g., the three Items in
Example 3.5 The objects contained in a Group are called the elements
of that Group.

3.2.2 Group Attributes
Table 2 lists the attributes of the Group class, organized by
functional categories. As with Item attributes, many of these
attributes can be left unspecified for any given Group, as the
default values usually lead to acceptable displays and behavior.

See the Traits API Reference for details of the Group class.

5 As with Views, it is possible for a Group to contain objects of more than one type, but
not recommended (see Section 3.2.5).

12-Sep-2007 11

Traits UI User Guide

Table 2: Attributes of Group, by category

Category Attributes Description

Display
format

• label
• show_border
• show_labels
• show_left
• padding
• layout
• selected.
• orientation
• style

These attributes define display
options for the group as a whole.

Visibility
and
status

• enabled_when
• visible_when
• defined_when

These attributes work similarly to
the attributes of the same names
on the Item class.

User help • help
• help_id

The help text is used by the
default help handler only if the
group is the only top-level group
for the current View. For example,
suppose help text is defined for a
Group called group1. The
following View shows this text in
its help window:
View(group1)
The following two do not:
View(group1, group2)
View(Group(group1))
The help_id attribute is ignored
by the default help handler, but
can be used by a custom help
handler.

Unique
identifier

• id This option is needed only for
advanced Traits UI applications;
see Section 9.1 on page 103 for an
example of its use.

12 12-Sep-2007

Traits UI User Guide

4 Customizing a View
As shown in the preceding two chapters, it is possible to specify a
window in Traits UI simply by creating a View object with the
appropriate contents. In designing real-life applications, however,
you usually need to be able to control the appearance and behavior
of the windows themselves, not merely their content. This chapter
covers a variety of options for tailoring the appearance of a
window that is created using a View, including the type of window
that a View appears in, the command buttons that appear in the
window, and the physical properties of the window.

4.1 Specifying Window Type: the
kind Attribute

Many types of windows can be used to display the same data
content. A form can appear in a dialog box, a wizard, or an
embedded panel; dialog boxes can be modal (i.e., stop all other
program processing until the box is dismissed) or not, and can
interact with live data or with a buffered copy. In Traits UI, a single
View can be used to implement any of these options simply by
modifying its kind attribute. There are seven possible values of
kind:

• ‘modal’
• ‘live’
• ‘livemodal’
• ‘nonmodal’
• ‘wizard’
• ‘panel’
• ‘subpanel’

These alternatives are described below. If the kind attribute of a
View object is not specified, the default value is ‘modal’.

4.1.1 Dialog Boxes: ‘modal’, ‘live’,
‘livemodal’, and ‘nonmodal’

As mentioned above, the behavior of a Traits UI dialog box can
vary over two significant degrees of freedom. First, it can be modal,

12-Sep-2007 13

Traits UI User Guide

meaning that when the dialog box appears, all other GUI
interaction is suspended until the dialog box is closed; if it is not
modal, then both the dialog box and the rest of the GUI remain
active and responsive. Second, it can be live, meaning that any
changes that the user makes to data in the dialog box is applied
directly and immediately to the underlying model object or objects;
otherwise the changes are made to a copy of the model data, and
are only copied to the model when the user commits them (usually
by clicking an OK or Apply button; see Section 4.2 on page 15). The
four possible combinations of these behaviors correspond to four of
the possible values of the ‘kind’ attribute of the View object, as
shown Table 3.

Table 3: Matrix of Traits UI dialog boxes
not modal modal

not live nonmodal modal

live live livemodal

All of these dialog box types are identical in appearance. Also, all
types support the buttons attribute, which is described in Section
4.2.

4.1.2 Wizards
Unlike a dialog box, whose contents generally appear as a single
page or a tabbed display, a wizard is presented as a series of pages
that a user must navigate sequentially.

Traits UI Wizards are always modal and live. They always display
a standard wizard button set; i.e., they ignore the buttons View
attribute. In short, wizards are considerably less flexible than dialog
boxes, and are primarily suitable for highly controlled user
interactions such as software installation.

4.1.3 Panels and Subpanels
Both dialog boxes and wizards are secondary windows that appear
separately from the main program display, if any. Often, however,
you might need to create a window element that is embedded in a

14 12-Sep-2007

Traits UI User Guide

larger display. For such cases, the kind of the corresponding View
object should be ‘panel’ or ‘subpanel’.

A panel is very similar to a dialog box, except that it is embedded in
a larger window, which need not be a Traits UI window. Like
dialog boxes, panels support the buttons View attribute, as well as
any menus and toolbars that are specified for the View (see Section
6.2.3 on page 32). Panels are always live and nonmodal.

A subpanel is almost identical to a panel. The only difference is that
subpanels do not display command buttons even if the View
specifies them.

4.2 Command Buttons: the buttons
Attribute

 A common feature of many windows is a row of command buttons
along the bottom of the frame. These buttons have a fixed position
outside any scrolled panels in the window, and are thus always
visible while the window is displayed. They are usually used for
window-level commands such as committing or cancelling the
changes made to the form data, or displaying a help window.

In Traits UI, these command buttons are specified by means of the
View object’s buttons attribute, whose value is a list of buttons to
display.6 Consider the following variation on Example 3:

Example 4: Using a View object with buttons
Sample code to demonstrate configure_traits()
from enthought.traits.api import HasTraits, Str, Int
from enthought.traits.ui.api import View, Item
from enthought.traits.ui.menu import OKbutton, CancelButton

class SimpleEmployee(HasTraits):
 first_name = Str
 last_name = Str
 department = Str

 employee_number = Str
 salary = Int

view1 = View(Item(name = 'first_name'),
 Item(name = 'last_name'),

6 Actually, the value of the buttons attribute is really a list of Action objects, from which
GUI buttons are generated by Traits UI. The Action class is described in Section 6.2.

12-Sep-2007 15

Traits UI User Guide

 Item(name = 'department'),
 buttons = [OKButton, CancelButton])
sam = SimpleEmployee()
sam.configure_traits(view=view1)

The resulting dialog box has the same content as before, but only
two buttons are displayed at the bottom: OK and Cancel:

Figure 4: User interface for Example 4

 Notice that the automatically sized dialog box is significantly
smaller than the one in the original example. See Section 4.3 on
page 17 for details on how to override automatic sizing.

There are six standard buttons defined by Traits UI:

• UndoButton
• ApplyButton
• RevertButton
• OKButton.
• CancelButton –
• HelpButton.

Alternatively, there are several pre-defined button lists that can be
imported from enthought.traits.ui.menu and assigned to the
buttons attribute:

• OKCancelButtons = [OKButton, CancelButton]
• ModalButtons = [ApplyButton, RevertButton, OKButton,

CancelButton, HelpButton]
• LiveButtons = [UndoButton, RevertButton, OKButton,

CancelButton, HelpButton]

Thus, one could rewrite the highlighted lines in Example 4 as
follows, and the effect would be exactly the same:
 buttons = OKCancelButtons

16 12-Sep-2007

Traits UI User Guide

Finally, the special constant NoButtons can be used to create a
dialog box or panel without command buttons. Note that buttons
= NoButtons is not equivalent to buttons = []. Setting the
buttons attribute to an empty list has the same effect as not
defining it at all: the default buttons (see Figure 1 through Figure 3)
are used.

It is also possible to define custom buttons and add them to this list;
see Section 6.2.3.2 on page 33 for details.

4.3 Other View Attributes
Table 4: Attributes of View, by category

Category Attributes Description

Window
display

• x
• y
• width
• height
• title
• resizable
• scrollable
• style
• dock

These attributes control the
visual properties of the window
itself, regardless of its content.

Command • handler
• menubar
• toolbar

Traits UI menus and toolbars are
generally implemented in
conjunction with custom
Handlers; see Section 6.2.3.2 on
page 33 for details.

User help • help
• help_id

The help attribute is a
deprecated way to specify that
the View has a Help button. Use
the buttons attribute instead (see
Section 4.2 on page 15 for
details).

Unique
identifier

• id

12-Sep-2007 17

Traits UI User Guide

5 Advanced View Concepts
The preceding chapters of this Guide give an overview of how to
use the View class to quickly construct a simple window for a
single HasTraits object. This chapter explores a number of more
complex techniques that significantly increase the power and
versatility of the View object.

• Internal views: Views can be defined as attributes of a HasTraits
class; one class can have multiple views. View attributes can be
inherited by subclasses.

• External views: A view can be defined as a module variable,
inline as a function or method argument, or as an attribute of a
Handler.

• Ways of displaying views: You can display a View by calling
configure_traits() or edit_traits() on a HasTraits object, or by
calling the ui() method on the View object.

• View context: You can pass a context to any of the methods for
displaying views, which is a dictionary of labels and objects. In
the default case, this dictionary contains only one object,
referenced as ‘object’, but you can define contexts that contain
multiple objects.

• Include objects: You can use an Include object as a placeholder for
view items defined elsewhere.

5.1 Internal Views
In the examples thus far, the View objects have been external. That
is to say, they have been defined outside the model (HasTraits
object or objects) that they are used to display. This approach is in
keeping with the separation of the two concepts prescribed by the
MVC design pattern.

There are cases in which it is useful to define a View within a
HasTraits class. In particular, it can be useful to associate one or
more Views with a particular type of object so that they can be
incorporated into other parts of the application with little or no
additional programming. Further, a View that is defined within a
model class is inherited by any subclasses of that class, a
phenomenon called visual inheritance.

18 12-Sep-2007

Traits UI User Guide

5.1.1 Defining a Default View
It is easy to define a default view for a HasTraits class: simply
create a View attribute called traits_view for that class. Consider
the following variation on Example 3:

Example 5: Using configure_traits() with a default View object
Sample code to demonstrate the use of 'traits_view'
from enthought.traits.api import HasTraits, Str, Int
from enthought.traits.ui.api import View, Item, Group
import enthought.traits.ui

class SimpleEmployee2(HasTraits):
 first_name = Str
 last_name = Str
 department = Str

 employee_number = Str
 salary = Int

 traits_view = View(Group(Item(name = 'first_name'),
 Item(name = 'last_name'),
 Item(name = 'department'),
 label = 'Personnel profile',
 show_border = True))

sam = SimpleEmployee2()
sam.configure_traits()

In this example, configure_traits() no longer requires a view
keyword argument; the traits_view attribute is used by default,
resulting in the same display as in Figure 3:

Figure 5: User interface for Example 5

It is not strictly necessary to call this View attribute traits_view. If
exactly one View attribute is defined for a HasTraits class, that
View is always treated as the default display template for the class.
However, if there are multiple View attributes for the class (as

12-Sep-2007 19

Traits UI User Guide

discussed in the next section), if one is named “traits_view”, it is
always used as the default.

5.1.2 Defining Multiple Views Within the
Model

Sometimes it is useful to have more than one pre-defined view for a
model class. In the case of the SimpleEmployee class, one might
want to have both a “public information” view like the one above
and an “all information” view. One can do this by simply adding a
second View attribute:

Example 6: Defining multiple View objects in a HasTraits class
Sample code to demonstrate the use of multiple views
from enthought.traits.api import HasTraits, Str, Int
from enthought.traits.ui.api import View, Item, Group
import enthought.traits.ui

class SimpleEmployee3(HasTraits):
 first_name = Str
 last_name = Str
 department = Str

 employee_number = Str
 salary = Int

 traits_view = View(Group(Item(name = 'first_name'),
 Item(name = 'last_name'),
 Item(name = 'department'),
 label = 'Personnel profile',
 show_border = True))

 all_view = View(Group(Item(name = 'first_name'),
 Item(name = 'last_name'),
 Item(name = 'department'),
 Item(name = 'employee_number'),
 Item(name = 'salary'),
 label = 'Personnel Database' +
 'Entry',
 show_border = True))

As before, a simple call to configure_traits() for an object of this
class produces a window based on the default View (traits_view).
In order to use the alternate View, use the same syntax as for an
external view, except that the View name is specified in single
quotes to indicate that it is associated with the object rather than
being a module-level variable:

20 12-Sep-2007

Traits UI User Guide

configure_traits(view='all_view').

Note that if more than one View is defined for a model class, you
must indicate which one is to be used as the default by naming it
traits_view. Otherwise, Traits UI gives preference to none of
them, and instead tries to construct a default View, resulting in a
simple alphabetized display as described in Chapter 2. For this
reason, it is usually preferable to name a model's default View
traits_view even if there are no other Views; otherwise, simply
defining additional Views—even if they are never used—can
unexpectedly change the behavior of the GUI.

5.2 Separating Model and View:
External Views

In all the preceding examples in this guide, the concepts of model
and view have remained closely coupled. In some cases the view
has been defined in the model class as in Section 5.1 on page 18; in
other cases the configure_traits() method that produces a window
from a View has been called from a HasTraits object. However,
these strategies are simply conveniences; they are not an intrinsic
part of the relationship between model and view in Traits UI. This
section begins to explore how the Traits UI package truly supports
the separation of model and view prescribed by the MVC design
pattern.

An external view is one that is defined outside the model classes. In
Traits UI, you can define a named View wherever you can define a
variable or class attribute.7 A View can even be defined in-line as a
function or method argument, for example:
object.configure_traits(view=View(Group(Item(name='a'),
 Item(name='b'),
 Item(name='c')))

However, this approach is apt to obfuscate the code unless the
View is very simple.

Example 2 through Example 4 demonstrate external Views defined
as variables. One advantage of this convention is that the variable

7 Note that although the definition of a View within a HasTraits class has the
syntax of a trait attribute definition, the resulting View is not stored as an
attribute of the class. See Section 11.1 for information on how to access such
Views.

12-Sep-2007 21

Traits UI User Guide

name provides an easily accessible “handle” for re-using the View.
This technique does not, however, support visual inheritance.

A powerful alternative is to define a View within the controller
(Handler) class that controls the window for that View.8 This
technique is described in Chapter 6.

5.3 Displaying a View
Traits UI provides three methods for creating a window or panel
from a View object. The first two, configure_traits() and
edit_traits(), are defined on the HasTraits class, which is a
superclass of all Traits-based model classes, as well as of Handler
and its subclasses. The third method, ui(), is defined on the View
class itself.

5.3.1 configure_traits()
The configure_traits() method creates a standalone window for a
given View object, i.e., it does not require an existing GUI to run in.
It is therefore suitable for building command-line functions, as well
as providing an accessible tool for the beginning Traits UI
programmer.

The configure_traits() method also provides options for saving trait
attribute values to and restoring them from a file. Refer to the Traits
API Reference for details.

5.3.2 edit_traits()
The edit_traits() method is very similar to configure_traits(), with
two major exceptions. First, it is designed to run from within a
larger application whose GUI is already defined. Second, it does
not provide options for saving data to and restoring data from a
file, as it is assumed that these operations are handled elsewhere in
the application.

8 Assuming there is one; not all GUIs require an explicitly defined Handler.

22 12-Sep-2007

Traits UI User Guide

5.3.3 ui()
The View object includes a method called ui(), which performs the
actual generation of the window or panel from the View for both
edit_traits() and configure_traits(). The ui() method is also available
directly through the Traits UI API, though it is usually preferable to
use one of the other two methods.9

The ui() method has five keyword parameters:

• kind
• context
• handler
• parent
• view_elements

The first four are identical in form and function to the
corresponding arguments of edit_traits(), except that context is not
optional; the following section explains why.

The fifth argument, view_elements, is used only in the context of a
call to ui() from a model object method, i.e., from configure_traits()
or edit_traits(), Therefore it is irrelevant in the rare cases when ui()
is used directly by client code. It contains a dictionary of the named
ViewElement objects defined for the object whose configure_traits()
(or edit_traits()) method was called..

5.4 The View Context
All three of the methods described in Section 5.3 have a context
parameter. This parameter can be a single object or a dictionary of
string/object pairs; the object or objects are the model objects whose
traits attributes are to be edited. In general a “context” is a Python
dictionary whose keys are strings; the key strings are used to look
up the values. In the case of the context parameter to the ui()
method, the dictionary values are objects. In the special case where
only one object is relevant, it can be passed directly instead of
wrapping it in a dictionary.

9 One possible exception is the case where a View object is defined as a variable (i.e.,
outside any class) or within a custom Handler, and is associated more or less equally
with multiple model objects; see Section 5.4.1: “Multi-Object Views”.

12-Sep-2007 23

Traits UI User Guide

When the ui() method is called from configure_traits() or
edit_traits() on a HasTraits object, the relevant object is the
HasTraits object whose method was called. For this reason, you do
not need to specify the context argument in most calls to
configure_traits() or edit_traits(). However, when you call the ui()
method on a View object, you must specify the context parameter, so
that the ui() method receives references to the objects whose trait
attributes you want to modify.

So, if configure_traits() figures out the relevant context for you,
why call ui() at all? One answer lies in multi-object views.

5.4.1 Multi-Object Views
A multi-object view is any view whose contents depend on
multiple “independent” model objects, i.e., objects that are not
attributes of one another. For example, suppose you are building a
real estate listing application, and want to display a window that
shows two properties side by side for a comparison of price and
features. This is straightforward in Traits UI, as the following
example shows:

Example 7: Using a multi-object view with a context
#Sample code to show multi-object view with context

from enthought.traits.api import HasTraits, Str, Int, Bool
from enthought.traits.ui.api import View, Group, Item

Sample class
class House(HasTraits):
 address = Str
 bedrooms = Int
 pool = Bool
 price = Int

View object designed to display two objects of class 'House'
comp_view = View(Group(Group(Item(name = 'address',
 object='h1',
 resizable=True),
 Item(name = 'bedrooms',
 object='h1'),
 Item(name = 'pool',
 object='h1'),
 Item(name = 'price',
 object='h1'),
 show_border = True),
 Group(Item(name = 'address',

24 12-Sep-2007

Traits UI User Guide

 object='h2',
 resizable=True),
 Item(name = 'bedrooms',
 object='h2'),
 Item(name = 'pool',
 object='h2'),
 Item(name = 'price',
 object='h2'),
 show_border = True),
 orientation = 'horizontal'),
 title = 'House comparison')

A pair of houses to demonstrate the View
house1 = House(address='4743 Dudley Lane',
 bedrooms=3,
 pool=False,
 price=150000)
house2 = House(address='11604 Autumn Ridge',
 bedrooms=3,
 pool=True,
 price=200000)

...And the actual display command
house1.configure_traits(view=comp_view, context={'h1':house1,
 'h2':house2})

The resulting window has the desired appearance:10

Figure 6: User interface for Example 7

For the purposes of this particular example, it makes sense to create
a separate Group for each model object, and to use two model
objects of the same class. Note, however, that neither is a
requirement. It is only necessary for the object attribute of each

10 If the script were designed to run within an existing GUI, it would make sense to
replace the last line with "comp_view.ui(context={'h1': house1, 'h2':
house2})", since neither object particularly dominates the view. However, the
examples in this Guide are designed to be fully executable from the Python command
line, which is why configure_traits() was used instead.

12-Sep-2007 25

Traits UI User Guide

Item to be represented in the context, and for the name of each Item
to be an existing attribute of the corresponding object.

Another use for multi-object views is shown in Section 8.1.9 on
page 60.

5.5 Include Objects
In addition to the Item and Group class, a third building block class
for Views exists in Traits UI: the Include class. For the sake of
completeness, this section gives a brief description of Include
objects and their purpose and usage. However, they are not
commonly used as of this writing, and should be considered
unsupported pending redesign.

In essence, an Include object is a placeholder for a named Group or
Item object that is specified outside the Group or View in which it
appears. For example, the following two definitions, taken
together, are equivalent to the third:

Example 8: Using an Include object
This fragment...
my_view = View(Group(Item(name='a'),
 Item(name='b')),
 Include('my_group'))

...plus this fragment...
my_group = Group(Item(name='c'),
 Item(name='d'),
 Item(name='e'))

#...are equivalent to this:
my_view = View(Group(Item(name='a'),
 Item(name='b')),
 Group(Item(name='c'),
 Item(name='d'),
 Item(name='e'))

This opens an interesting possibility when a View is part of a model
class: any Include objects belonging to that View can be defined
differently for different instances or subclasses of that class. This
technique is called view parameterization.

26 12-Sep-2007

Traits UI User Guide

6 Controlling the Interface: the
Handler

Most of the material in the preceding chapters is concerned with
the relationship between the model and view aspects of the MVC
design pattern as supported by Traits UI. This chapter examines the
third aspect: the controller, implemented in Traits UI as an instance
of the Handler class.

A controller for an MVC-based application is essentially an event
handler for GUI events, i.e., for events that are generated through
or by the program interface. Such events can require changes to one
or more model objects (e.g., because a data value has been updated)
or manipulation of the interface itself (e.g., window closure,
dynamic interface behavior). In Traits UI, such actions are
performed by a Handler object.11

In the preceding examples in this guide, the Handler object has
been implicit: Traits UI provides a default Handler that takes care
of a common set of GUI events including window initialization and
closure, data value updates, and button press events for the
standard Traits UI window buttons (see Section 4.2 on page 15).

This chapter explains the features of the Traits UI Handler, and
shows how to implement custom GUI behaviors by building and
instantiating custom subclasses of the Handler class. The final
section of the chapter describes several techniques for linking a
custom Handler to the window or windows it is designed to
control.

6.1 Backstage: Introducing the
UIInfo Object

Traits UI supports the MVC design pattern by maintaining the
model, view and controller as separate entities. A single View
object can be used to construct windows for multiple model objects;
likewise a single Handler can handle GUI events for windows
created using different Views. Thus there is no static link between a
Handler and any particular window or model object. However, in

11 Except those implemented via the enabled_when, visible_when, and defined_when
attributes of Items and Groups.

12-Sep-2007 27

Traits UI User Guide

order to be useful, a Handler must be able to observe and
manipulate both its corresponding window and model objects. In
Traits UI, this is accomplished by means of the UIInfo object.

Whenever Traits UI creates a window or panel from a View, a
UIInfo object is created to act as the Handler’s reference to that
window and to the objects whose trait attributes are displayed in it.
Each entry in the View’s context (see Section 5.4 on page 23)
becomes an attribute of the UIInfo object.12 For example, the UIInfo
object created in Example 7 (on page 24) has attributes h1 and h2
whose values are the objects house1 and house2 respectively. In
Example 1 through Example 6, the created UIInfo object has an
attribute object whose value is the object sam.

Whenever a window event causes a Handler method to be called,
Traits UI passes the corresponding UIInfo object as one of the
method arguments. This gives the Handler the information
necessary to perform its tasks, as described in the next two sections.

6.2 Writing Handler Methods
If you create a custom Handler subclass, depending on the
behavior you want to implement, you might override the standard
methods of Handler, or you might create methods that respond to
changes to specific trait attributes.

6.2.1 Overriding Standard Methods
The Handler class provides methods that are automatically
executed at certain points in the lifespan of the window controlled
by a given Handler. By overriding these methods, you can
implement a variety of custom window behaviors. The following
sequence shows the points at which the Handler methods are
called.

1. A UIInfo object is created

2. The Handler’s init_info() method is called. Override this
method if the handler needs access to viewable traits on the

12 Other attributes of the UIInfo object include a UI object (see Section 10.1) and any trait
editors contained in the window (see Chapters 7-9). The use of these UIInfo attributes is
discussed in Section 10.2.

28 12-Sep-2007

Traits UI User Guide

UIInfo object whose values are properties that depend on items
in the context being edited.

3. The UI object is created, and generates the actual window.

4. The init() method is called. Override this method if you need to
initialize or customize the window.

5. The position() method is called. Override this method to modify
the position of the window (if setting the x and y attributes of
the View is insufficient).

6. The window is displayed.

Table 5: When Handler methods are called, and when to override them

Method Called When Override When?

apply(self,
info)

The user clicks the
Apply button, and
after the changes have
been applied to the
context objects.

To perform
additional
processing at this
point.

close(self,
info,
is_ok)

The user requests to
close the window,
clicking OK, Cancel, or
the window close
button, menu, or icon.

To perform
additional checks
before destroying
the window.

closed(self,
info,
is_ok)

The window has been
destroyed

To perform
additional clean-
up tasks.

revert(self,
info)

The user clicks the
Revert button, or clicks
Cancel in a live dialog
box.

To perform
additional
processing.

12-Sep-2007 29

Traits UI User Guide

Method Called When Override When?

setattr(self,
info,
object,
name,
value)

The user changes a trait
attribute value through
the user interface

To perform
additional
processing, such
as keeping a
change history.
Make sure that
the overriding
method actually
sets the attribute.

show_help(self,
info,
control=
None)

The user clicks the
Help button.

To call a custom
help handler in
addition to or
instead of the
global help
handler, for this
window.

6.2.2 Reacting to Trait Changes
The setattr() method described above is called whenever any trait
value is changed in the UI. However, Traits UI also provides a
mechanism for calling methods that are automatically executed
whenever the user edits a particular trait. While you can use static
notification handler methods on the HasTraits object, one might
want to implement behavior that concerns only the user interface.
In that case, following the MVC pattern dictates that such behavior
should not be implemented in the “model” part of the code. In
keeping with this pattern, Traits UI supports “user interface
notification” methods, which must have a signature with the
following format:

objectname_traitname_changed(self, info)
This method is called whenever a change is made to the attribute
traitname of the object whose key is objectname in the context of the
View used to create the window (see Section 5.4 on page 23).

Remember that if an object is displayed without an explicit View
context, it implicitly uses the literal string ‘object’ as its context key.

30 12-Sep-2007

Traits UI User Guide

Thus, if you are writing a subclass of Handler to use with the
SimpleEmployee class and its View from Example 2 (on page 5),
and you want certain code to execute whenever the salary attribute
is edited, you can place that code in the body of a method called
object_salary_changed(). By contrast, a subclass of Handler for
Example 8 (on page 26) might include a method called
h2_price_changed() to be called whenever the price of the second
house is edited.

Important: These methods are called on window creation.
User interface notification methods are called when the

window is first created.

To differentiate between code that should be executed when the
window is first initialized and code that should be executed when
the trait actually changes, use the initialized attribute of the UIInfo
object (i.e., of the info argument):
def object_foo_changed(self, info):

 if not info.initialized:
 #code to be executed only when the window is
 #created
 else:
 #code to be executed only when 'foo' changes after
 #window initialization}

 #code to be executed in either case

The following script, which annotates its window’s title with an
asterisk (‘*’) the first time a data element is updated, demonstrates
a simple use of both an overridden setattr() method and user
interface notification method.

Example 9: Using a Handler that overrides setattr() and that has a user
interface notification method

from enthought.traits.api import HasTraits, Bool
from enthought.traits.ui.api import View, Handler

class TC_Handler(Handler):

 def setattr(self, info, object, name, value):
 Handler.setattr(self, info, object, name, value)
 info.object._updated = True

 def object__updated_changed(self, info):
 if info.initialized:
 info.ui.title += "*"

12-Sep-2007 31

Traits UI User Guide

class TestClass(HasTraits):
 b1 = Bool
 b2 = Bool
 b3 = Bool
 _updated = Bool(False)

view1 = View('b1', 'b2', 'b3',
 title="Alter Title on Update",
 handler=TC_Handler())

tc = TestClass()
tc.configure_traits(view=view1)

6.2.3 Implementing Custom Window
Commands

Another purpose that you can use a Handler for is to define custom
window actions, which can be presented as buttons, menu items, or
toolbar buttons.

6.2.3.1 Actions
In Traits UI, window commands are implemented as instances of
the Action class. Actions can be used in command buttons, menus,
and toolbars.

Suppose you want to build a window with a custom Recalculate
action. Suppose further that you have defined a subclass of
Handler called MyHandler to provide the logic for the window. To
create the action:

1. Add a method to MyHandler that implements the command
logic. This method can have any name (e.g., do_recalc()), but
must accept exactly one argument: a UIInfo object.

2. Create an Action instance using the name of the new method,
e.g.:

recalc = Action(name = "Recalculate",
 action = "do_recalc")

32 12-Sep-2007

Traits UI User Guide

6.2.3.2 Custom Command Buttons
The simplest way to turn an Action into a window command is to
add it to the buttons attribute for the View. It appears in the button
area of the window, along with any standard buttons you specify.

1. Define the handler method and action, as described in Section
6.2.3.1.

2. Include the new Action in the buttons attribute for the View:
View (#view contents,
 # …,
 buttons = [OKButton, CancelButton, recalc])

6.2.3.3 Menus and Menu Bars
Another way to install an Action such as recalc as a window
command is to make it into a menu option.

1. Define the handler method and action, as described in Section
6.2.3.1.

2. If the View does not already include a MenuBar, create one and
assign it to the View's menubar attribute.

3. If the appropriate Menu does not yet exist, create it and add it to
the MenuBar.

4. Add the Action to the Menu.

These steps can be executed all at once when the View is created, as
in the following code:
View (#view contents,
 # …,
 menubar = MenuBar(
 Menu(my_action,
 name = 'My Special Menu')))

6.2.3.4 Toolbars
A third way to add an action to a Traits View is to make it a button
on a toolbar. Adding a toolbar to a Traits View is similar to adding
a menu bar, except that toolbars do not contain menus; they
directly contain actions.

1. Define the handler method and the action, as in Section 6.2.3.1 o
page 32, including a tooltip and an image to display on the

12-Sep-2007 33

Traits UI User Guide

toolbar. The image must be a Pyface ImageResource instance; if
a path to the image file is not specified, it is assumed to be in an
images subdirectory of the directory where ImageResource is
used.

From enthought.pyface.api import ImageResource

recalc = Action(name = "Recalculate",
 action = "do_recalc",
 toolip = "Recalculate the results",
 image = ImageResource("recalc.png"))

2. If the View does not already include a ToolBar, create one and
assign it to the View's toolbar attribute.

3. Add the Action to the ToolBar.

As with a MenuBar, these steps can be executed all at once when
the View is created, as in the following code:
View (#view contents,
 # …,
 toolbar = ToolBar(my_action))

6.3 Assigning Handlers to Views
In accordance with the MVC design pattern, Handlers and Views
are separate entities belonging to distinct classes. In order for a
custom Handler to provide the control logic for a window, it must
be explicitly associated with the View for that window. The Traits
UI package provides three ways to accomplish this:

• Make the Handler an attribute of the View.
• Provide the Handler as an argument to a display method such

as edit_traits().
• Define the View as part of the Handler.

6.3.1 Binding a Singleton Handler to a
View

To associate a given custom Handler with all windows produced
from a given View, assign an instance of the custom Handler class
to the View’s handler attribute. This is the technique used in
Example 9, with the result that the window created by the

34 12-Sep-2007

Traits UI User Guide

configure_traits() call (and any other window built using view1) is
automatically controlled by an instance of TC_Handler.

6.3.2 Linking Handler and View at Edit
Time

It is also possible to associate a custom Handler with a specific
window without assigning it permanently to the View. Each of the
three Traits UI window-building methods (the configure_traits()
and edit_traits() methods of the HasTraits class and the ui() method
of the View class) has a handler keyword argument. Assigning an
instance of Handler to this argument gives that instance control
only of the specific window being created by the method. This assignment
overrides the View’s handler attribute.

For example, you can replace the last line of Example 9 with:
tc.configure_traits(view=view1, handler=SomeOtherHandler())

The resulting window is controlled by an instance of
SomeOtherHandler rather than of TC_Handler.

6.3.3 Creating a Default View Within a
Handler

You seldom need to associate a single custom Handler with several
different Views or vice versa, although you can in theory and there
are cases where it is useful to be able to do so. In most real-life
scenarios, a custom Handler is tailored to a particular View with
which it is always used. One way to reflect this usage in the
program design is to define the View as part of the Handler. For
example, one can rewrite Example 9 (on page 31) a little more
concisely as follows:

Example 10: Defining a default view in a Handler class
from enthought.traits.api import HasTraits, Bool
from enthought.traits.ui.api import View, Handler

class TC_Handler(Handler):

 def setattr(self, info, object, name, value):
 Handler.setattr(self, info, object, name, value)
 info.object._updated = True

12-Sep-2007 35

Traits UI User Guide

 def object__updated_changed(self, info):
 if info.initialized:
 info.ui.title += "*"

 traits_view = View('b1', 'b2', 'b3',
 title="Alter Title on Update")

class TestClass(HasTraits):
 b1 = Bool
 b2 = Bool
 b3 = Bool
 _updated = Bool(False)

tc = TestClass()
TC_Handler().configure_traits(context={"object":tc})

The Handler class, which is a subclass of HasTraits, overrides the
standard configure_traits() and edit_traits() methods; the child
versions are identical to the originals except that the Handler object
on which they are called becomes the default Handler for the
resulting windows. Note that for these versions of the display
methods, the context keyword parameter is not optional.

36 12-Sep-2007

Traits UI User Guide

7 Introduction to Trait Editor
Factories

The preceding code samples in this User Guide have been
surprisingly simple considering the sophistication of the interfaces
that they produce. In particular, no code at all has been required to
produce appropriate widgets for the Traits to be viewed or edited
in a given window. This is one of the strengths of Traits UI: usable
interfaces can be produced simply and with a relatively low level of
UI programming expertise.

An even greater strength lies in the fact that this simplicity does not
have to be paid for in lack of flexibility. Where a novice Traits UI
programmer can ignore the question of widgets altogether, a more
advanced one can select from a variety of predefined interface
components for displaying any given Trait. Furthermore, a
programmer who is comfortable both with Traits UI and with UI
programming in general can harness the full power and flexibility
of the underlying GUI toolkit from within Traits UI.

 The secret behind this combination of simplicity and flexibility is a
Traits UI construct called a trait editor factory. A trait editor factory
encapsulates a set of display instructions for a given trait type,
hiding GUI-toolkit-specific code inside an abstraction with a
relatively straightforward interface. Furthermore, every predefined
trait type in the Traits package has a predefined trait editor factory
that is automatically used whenever the trait is displayed, unless
you specify otherwise.

Consider the following script and the window it creates:

Example 11: Using default trait editors
from enthought.traits.api import HasTraits, Str, Range, Bool
from enthought.traits.ui.api import View, Item

class Adult(HasTraits):
 first_name = Str
 last_name = Str
 age = Range(21,99)
 registered_voter = Bool

 traits_view = View(Item(name='first_name'),
 Item(name='last_name'),
 Item(name='age'),
 Item(name='registered_voter'))

12-Sep-2007 37

Traits UI User Guide

alice = Adult(first_name=’Alice’,
 last_name=’Smith’,
 age=42,
 registered_voter=True)

alice.configure_traits()

Figure 7: User interface for Example 11

Notice that each trait is displayed in an appropriate widget, even
though the code does not explicitly specify any widgets at all. The
two Str traits appear in text boxes, the Range is displayed using a
combination of a text box and a slider, and the Bool is represented
by a checkbox. Each implementation is generated by the default
trait editor factory (TextEditor, RangeEditor and BooleanEditor
respectively) associated with the trait type.

Traits UI is by no means limited to these defaults. There are two
ways to override the default representation of a trait attribute in a
Traits UI window:

• Explicitly specifying an alternate trait editor factory
• Specifying an alternate style for the editor generated by the

factory

The remainder of this chapter examines these alternatives more
closely.

7.1 Specifying an Alternate Trait
Editor Factory

As of this writing the Traits UI package includes the following
predefined trait editor factories:

• ArrayEditor()
• BooleanEditor()

• ButtonEditor()
• CheckListEditor()

38 12-Sep-2007

Traits UI User Guide

• CodeEditor()
• ColorEditor()
• CompoundEditor()
• CustomEditor()
• DNDEditor()
• DirectoryEditor()
• DropEditor()
• EnableRGBAColorEditor()
• EnumEditor()
• FileEditor()
• FontEditor()
• HTMLEditor()
• ImageEnumEditor()
• InstanceEditor()

• KeyBindingsEditor()
• KivaFontEditor()
• ListEditor()
• NullEditor()
• RangeEditor()
• RGBColorEditor()
• RGBAColorEditor()
• SetEditor()
• ShellEditor()
• TableEditor()
• TextEditor()
• TreeEditor()
• TupleEditor()
• ValueEditor()

For a current complete list of editor factories, refer to the Traits API
Reference. These editor factories are described in detail in Chapter 8.

For most predefined traits (see Traits User Manual), there is exactly
one predefined trait editor factory suitable for displaying it: the
editor factory that is assigned as its default.13 There are exceptions,
however; for example, there are two different editor factories for
displaying an RGBAColor trait: RGBAColorEditor and
EnableRGBAColorEditor. A List trait can be edited by means of
ListEditor, TableEditor (if the List elements are HasTraits objects),
CheckListEditor or SetEditor. Furthermore, the Traits UI package
includes tools for building additional trait editors and factories for
them as needed; these tools are described in Chapter 9.

To use an alternate editor factory for a trait in a Traits UI window,
you must specify it in the View for that window. This is done at the
Item level, using the editor keyword parameter. The syntax of the
specification is editor = editor_name(). (This syntax is also used
for specifying that the default editor should be used, but with
certain keyword parameters explicitly specified; see Section 7.1.1 on
page 41).

For example, to display an RGBAColor trait called my_color using
the default editor factory (RGBAColorEditor()), the View might
contain the following Item:
Item(name='my_color')

13 Appendix II contains a table of the predefined trait types in the Traits package and their
default trait editor types.

12-Sep-2007 39

Traits UI User Guide

The resulting widget would have the following appearance:

Figure 8: Default editor for an RGBAColor trait

To use the EnableRGBAColorEditor factory instead, add the
appropriate specification to the Item:
Item(name='my_color', editor=EnableRGBAColorEditor())

The resulting widget appears as in Figure 9:

Figure 9: Editor generated by EnableRGBAColorEditor()

NOTE: Traits UI does not check editors for appropriateness.
Traits UI does not police the editor argument to ensure that

the specified editor is appropriate for the trait being
displayed. Thus there is nothing to prevent one from

trying to, say, display a Float trait using a ColorEditor. The
results of such a mismatch are unlikely to be helpful, and
can even crash the application; it is up to the programmer

to choose an editor sensibly. Chapter 8 is a useful
reference for selecting an appropriate editor for a given

task.

It is possible to specify the trait editor for a trait in other ways:

• You can specify a trait editor when you define a trait, by passing
the result of a trait editor factory to the editor keyword
parameter of the Trait() function. However, this approach
commingles the “view” of a trait with its “model”.

• You can specify the editor attribute of a TraitHandler object.
This approach commingles the “view” of a trait with its
“controller”.

Use these approaches very carefully, if at all, as they muddle the
MVC design pattern.

40 12-Sep-2007

Traits UI User Guide

7.1.1 Initializing Editors
Many of the Traits UI trait editors can be used “straight from the
box” as in the example above. There are some editors, however,
that must be initialized in order to be useful. For example, a
checklist editor (from CheckListEditor()) and a set editor (from
SetEditor()) both enable the user to edit a List by selecting elements
from a specified set; the contents of this set must, of course, be
known to the editor. This sort of initialization is usually performed
by means of one or more keyword arguments to the editor factory,
for example:
Item(name=’my_list’,editor=CheckListEditor(values=["opt1","
opt2","opt3"]))

The descriptions of trait editor factories in Chapter 8 include a list
of required and optional initialization keywords for each editor.

7.2 Specifying an Editor Style
In Traits UI, any given trait editor can be generated in any of four
different styles: simple, custom, text or readonly. These styles, which
are described in general terms below, represent different “flavors”
of data display, so that a given trait editor can look completely
different in one style than in another. However, different trait
editors displayed in the same style (usually) have noticeable
characteristics in common. This is useful because editor style,
unlike individual editors, can be set at the Group or View level, not
just at the Item level. This point is discussed further in Section 7.2.5
on page 44.

7.2.1 The ‘simple’ Style
The simple editor style is designed to be as functional as possible
while requiring minimal space within the window. In simple style,
most of the Traits UI editors take up only a single line of space in
the window in which they are embedded.

In some cases, such as the text editor and Boolean editor (see
Section 8.1 on page 46), the single line is fully sufficient. In others,
such as the (plain) color editor and the enumeration editor, a more
detailed interface is required; pop-up panels, drop-down lists, or

12-Sep-2007 41

Traits UI User Guide

dialog boxes are often used in such cases. For example, the simple
version of the enumeration editor for the wxWindows toolkit looks
like this:

Figure 10: Simple style of enumeration editor

However, when the user clicks on the widget , a drop-down list
appears:

Figure 11: Simple enumeration editor with expanded list

The simple editor style is most suitable for windows that must be
kept small and concise.

7.2.2 The ‘custom’ Style
The custom editor style generally generates the most detailed
version of any given editor. It is intended to provide maximal
functionality and information without regard to the amount of
window space used. For example, in the wxWindows toolkit, the
custom style the enumeration editor appears as a set of radio
buttons rather than a drop-down list:

Figure 12: Custom style of enumeration editor

In the custom style of the RGBA color editor for wxWindows, the
color palette is embedded in the window rather than appearing as a
pop-up panel:

42 12-Sep-2007

Traits UI User Guide

Figure 13: Custom style of RGBA color editor

In general, the custom editor style can be very useful when there is
no need to conserve window space, as it enables the user to see as
much information as possible without having to interact with the
widget. It also usually provides the most intuitive interface of the
four.

Note that this style is not defined explicitly for all trait editor
implementations. If the custom style is requested for an editor for
which it is not defined, the simple style is generated instead.

7.2.3 The ‘text’ Style
The text editor style is the simplest of the editor styles. When
applied to a given trait attribute, it generates a text representation
of the trait value in an editable box. Thus the enumeration editor in
text style looks like the following:

Figure 14: Text style of enumeration editor

For this type of editor, the end user must type in a valid value for
the attribute. If the user types an invalid value, the trait validator for
the attribute (see Traits User Manual) notifies the user of the error
(for example, by shading the background of the text box red).

The text representation of an attribute to be edited in a text style
editor is created in one of the following ways, listed in order of
priority:

• The function specified in the format_func attribute of the Item
(see Section 3.1 on page 7), if any, is called on the attribute
value.

• Otherwise, the function specified in the format_func parameter
of the trait editor factory (see Section 9.2.1.1 on page 103), if any,
is called on the attribute value.

12-Sep-2007 43

Traits UI User Guide

• Otherwise, the Python-style formatting string specified in the
format_str attribute of the Item (see Section 3.1 on page 7), if
any, is used to format the attribute value.

• Otherwise, the Python-style formatting string specified in the
format_str parameter of the trait editor factory (see Section
9.2.1.1 on page 103), if any, is used to format the attribute value.

• Otherwise, the Python str() function is called on the attribute
value.

7.2.4 The ‘readonly’ style
The readonly editor style is usually identical in appearance to the
text style, except that the value appears as static text rather than in
an editable box:

Figure 15: Read-only style of enumeration editor

This editor style is used to display data values without allowing the
user to change them.

7.2.5 Using Editor Styles
As discussed in Chapters 3 and 4, the Item, Group and View objects
of Traits UI all have a style attribute. The style of editor used to
display the Items in a View is determined as follows:

1. The editor style used to display a given Item is the value of its
style attribute if specifically assigned. Otherwise the editor style
of the Group or View that contains the Item is used.

2. The editor style of a Group is the value of its style attribute if
assigned. Otherwise, it is the editor style of the Group or View
that contains the Group.

3. The editor style of a View is the value of its style attribute if
specified, and simple otherwise.

In other words, editor style can be specified at the Item, Group or
View level, and in case of conflicts the style of the smaller scope
takes precedence. For example, consider the following script:

44 12-Sep-2007

Traits UI User Guide

Example 12: Using editors styles at various levels
from enthought.traits.api import HasTraits, Str, Enum
from enthought.traits.ui.api import View, Group, Item

class MixedStyles(HasTraits):
 first_name = Str
 last_name = Str

 department = Enum("Business", "Research", "Admin")
 position_type = Enum("Full-Time",
 "Part-Time",
 "Contract")

 traits_view = View(Group(Item(name='first_name'),
 Item(name='last_name'),
 Group(Item(name='department'),
 Item(name=
 'position_type',
 style='custom'),
 style='simple')),
 title='Mixed Styles',
 style='readonly')

ms = MixedStyles(first_name='Sam', last_name='Smith')
ms.configure_traits()

Notice how the editor styles are set for each attribute:

• position_type at the Item level
• department at the Group level
• first_name and last_name at the View level

The resulting window demonstrates these precedence rules:

Figure 16: User interface for Example 12

12-Sep-2007 45

Traits UI User Guide

8 The Predefined Trait Editor
Factories

This chapter contains individual descriptions of the predefined trait
editor factories provided by Traits UI. Most of these editor factories
are straightforward and can be used easily with little or no
expertise on the part of the programmer or end user; these are
described in Section 8.1. Section 8.2 (on page 81) covers a smaller
set of specialized editors that have more complex interfaces or that
are designed to be used along with complex editors.

NOTE: Examples are toolkit-specific.
The exact appearance of the editors depends on the

underlying GUI toolkit. The screenshots and descriptions
in this chapter are based on wxWindows, which is the

only currently supported GUI toolkit.

Rather than trying to memorize all the information in this chapter,
you might skim it to get a general idea of the available trait editors
and their capabilities, and to use it as a reference thereafter.

8.1 Basic Trait Editor Factories
The editor factories described in the following sections are
straightforward to use. You can pass the editor object returned by
the editor factory as the value of the editor keyword parameter
when defining a trait.

8.1.1 ArrayEditor()
Suitable for 2-D Array, 2-D CArray
Default for Array, CArray (if 2-D)

Required parameters (none)
Optional parameters width

The editors generated by ArrayEditor() provide text fields (or static
text for the read-only style) for each cell of a two-dimensional
Numeric array. Only the simple and read-only styles are supported

46 12-Sep-2007

Traits UI User Guide

by the wxWindows implementation. You can specify the width of
the text fields with the width parameter.

Figure 17: Array editors

The following code generates the editors shown in Figure 17.

Example 13: Demonstration of array editors
from enthought.util.numerix import Int, Float
from enthought.traits.api import HasPrivateTraits, Array
from enthought.traits.ui.api \
 import View, ArrayEditor, Item
from enthought.traits.ui.menu import NoButtons

class ArrayEditorTest (HasPrivateTraits):

 three = Array((3,3), Int)
 four = Array((4,4),
 Float,
 editor = ArrayEditor(width = -50))

12-Sep-2007 47

Traits UI User Guide

 view = View(Item('three', label='3x3 Integer'),
 '_',
 Item('three',
 label='Integer Read-only',
 style=’readonly’),
 '_',
 Item('four', label='4x4 Float'),
 '_',
 Item('four',
 label='Float Read-only',
 style=’readonly’),
 buttons = NoButtons,
 resizable = True)

if __name__ == '__main__':
 ArrayEditorTest().configure_traits()

8.1.2 BooleanEditor()
Suitable for Bool, CBool
Default for Bool, CBool

Required parameters (none)
Optional parameters mapping

BooleanEditor is one of the simplest of the built-in editor factories
in the Traits UI package. It is used exclusively to edit and display
Boolean (i.e, True/False) traits. In the simple and custom styles, it
generates a checkbox. In the text style, the editor displays the trait
value (as one would expect) as the strings True or False.
However, several variations are accepted as input:

• True
• True
• T
• Yes
• y
• False
• False
• F
• No
• n

The set of acceptable text inputs can be changed by setting the
BooleanEditor() parameter mapping to a dictionary whose entries

48 12-Sep-2007

Traits UI User Guide

are of the form str: val, where val is either True or False and str is a
string that is acceptable as text input in place of that value. For
example, to create a Boolean editor that accepts only yes and no as
appropriate text values, you might use the following expression:
editor=BooleanEditor(mapping={"yes":True, "no":False})

Note that in this case, the strings True and False would not be
acceptable as text input.

Figure 18 shows the four styles generated by BooleanEditor().

Figure 18: Boolean editor styles

8.1.3 ButtonEditor()
Suitable for Button, Event, ToolbarButton
Default for Button, ToolbarButton

Required parameters (none)
Optional parameters label, value

The ButtonEditor() factory is designed to be used with an Event or
Button14 trait. When a user clicks on a button editor, the associated
event is fired. Because events are not printable objects, the text and
read-only styles are not implemented for this editor. The simple
and custom styles of this editor are identical, as shown in Figure 19.

14 In Traits, a Button and an Event are essentially the same thing, except that Buttons are
automatically associated with ButtonEditors.

12-Sep-2007 49

Traits UI User Guide

Figure 19: Button editor styles

By default, the label of the button is the name of the Button or
Event trait to which it is linked.15 However, this label can be set to
any string by specifying the label parameter of ButtonEditor() as
that string.

You can specify a value for the trait to be set to, using the value
parameter. If the trait is an Event, then the value is not stored, but
might be useful to an event listener.

8.1.4 CheckListEditor()
Suitable for List
Default for (none)

Required parameters values
Optional parameters cols, names

The editors generated by the CheckListEditor() factory are
designed to enable the user to edit a List trait by selecting elements
from a “master list”, i.e., a list of possible values. The values
parameter of CheckListEditor() contains this master list, and must
therefore be specified when calling the factory.

The values parameter can take either of two forms:

• A list of strings
• A list of tuples of the form (element, label), where element can be

of any type and label is a string.

In the latter case, the user selects from the labels, but the
underlying trait is a List of the corresponding element values.

Alternatively, you can use the names parameter to specify the string
labels for the values.

15 Traits UI makes minor modifications to the name, capitalizing the first letter and
replacing underscores with spaces, as in the case of a default Item label (see Section 3.1).

50 12-Sep-2007

Traits UI User Guide

The custom style of editor from this factory is displayed as a set of
checkboxes. By default, these checkboxes are displayed in a single
column; however, you can initialize the cols parameter of the editor
factory to any value between 1 and 20, in which case the
corresponding number of columns is used.

The simple style generated by CheckListEditor() appears as a drop-
down list; in this style, only one list element can be selected, so it
returns a list with a single item. The text and read-only styles
represent the current contents of the attribute in Python-style text
format; in these cases the user cannot see the master list values that
have not been selected.

The four styles generated by CheckListEditor() are shown in Figure
20. Note that in this case the cols parameter has been set to 4.

Figure 20: Checklist editor styles

8.1.5 CodeEditor()
Suitable for Code, Str, String
Default for Code

Required parameters (none)
Optional parameters auto_set, key_bindings

The purpose of a code editor is to display and edit Code traits,
though it can be used with the Str and String trait types as well. In
the simple and custom styles (which are identical for this editor),
the text is displayed in numbered, non-wrapping lines with a
horizontal scrollbar. The text style displays the trait value using a
single scrolling line with special characters to represent line breaks.
The read-only style is similar to the simple and custom styles

12-Sep-2007 51

Traits UI User Guide

except that line numbers are not displayed and the text is wrapped
(and, of course, not editable).

Figure 21: Code editor styles

The auto_set keyword parameter is a Boolean value indicating
whether the trait being edited should be updated with every
keystroke (True) or only when the editor loses focus, i.e., when the
user tabs away from it or closes the window (False). The default
value of this parameter is True.

The key_bindings keyword parameter is a reference to a
KeyBindings object, which is a set of KeyBinding objects, which
associate key strokes with Handler methods. See Section 8.2.2 for
more information about key bindings.

8.1.6 Color Editors
The following sections describe the editor factories that are
available to created editors for color traits.

52 12-Sep-2007

Traits UI User Guide

8.1.6.1 ColorEditor()
Suitable for Color
Default for Color

Required parameters (none)
Optional parameters mapped

The editors generated by ColorEditor() are designed to enable the
user to display a Color trait or edit it by selecting a color from the
palette available in the underlying GUI toolkit. The four styles of
color editor are shown in Figure 22.

Figure 22: Color editor styles

In the simple style, the editor appears as a text box whose
background is a sample of the currently selected color. The text in
the box is either a color name or a tuple of the form (r,g,b) where r,
g, and b are the numeric values of the red, green and blue color
components respectively. (Which representation is used depends
on how the value was entered.) The text value is not directly
editable in this style of editor; instead, clicking on the text box
displays a pop-up panel similar in appearance and function to the
custom style.

The custom style includes a labeled color swatch on the left,
representing the current value of the Color trait, and a palette of
common color choices on the right. Clicking on any tile of the
palette changes the color selection, causing the swatch to update
accordingly. Clicking on the swatch itself causes a more detailed,
platform-specific interface to appear in a dialog box, such as is
shown in Figure 23.

12-Sep-2007 53

Traits UI User Guide

Figure 23: Custom color selection dialog box for Microsoft Windows XP

The text style of editor looks exactly like the simple style, but the
text box is editable (and clicking on it does not open a pop-up
panel). The user must enter a recognized color name or a properly
formatted (r,g,b) tuple.

The read-only style displays the text representation of the currently
selected Color value (name or tuple) on a minimally-sized
background of the corresponding color.

For advanced users: The mapped keyword parameter of
ColorEditor() is a Boolean value indicating whether the trait being
edited has a built-in mapping of user-oriented representations (e.g.,
strings) to internal representations. Since ColorEditor() is generally
used only for Color traits, which are mapped (e.g., cyan to
wx.Colour(0,255,255)), this parameter defaults to True and is not of
interest to most programmers. However, it is possible to define a
custom color Trait that uses ColorEditor() but is not mapped (i.e.,
uses only one representation), which is why the attribute is
available.

54 12-Sep-2007

Traits UI User Guide

8.1.6.2 EnableRGBAColorEditor()
Suitable for RGBAColor
Default for (none)

Required parameters (none)
Optional parameters auto_set, edit_alpha, mode, text, font

The editors generated by EnableRGBAColorEditor() use an Enable
(enthought.enable) widget to modify colors.

Figure 24 shows the editors generated by
EnableRGBAColorEditor(). The text and read-only styles are
identical to those generated by RGBAColorEditor() (see Section
8.1.6.4 on page 57).

Figure 24: “Enable” editor styles for RGBAColor traits

The simple editor style shows a color swatch, and three graphical
sliders, one each for red, green, blue, and alpha (transparency). The
color swatch displays (in barely readable form) the red, green, and
blue values. Clicking on the swatch itself causes a more detailed,
platform-specific interface to appear in a dialog box, as shown in
Figure 23 on page 54.

The custom editor style displays a larger color swatch with the red,
green, and blue values, a vertical alpha slider, and an area for
specifying the color. Small buttons to the right of the color area
control what appears in that area, as shown in Table 6:

12-Sep-2007 55

Traits UI User Guide

Table 6: Color selector for Enable custom editor

Button
Selecte
d

Appearance Description

R Horizontal sliders for red, green,
and blue

H 2-D selector for saturation and
value; vertical slider for hue.

S 2-D selector for value and hue;
vertical slider for saturation.

V 2-D selector for saturation and
hue; vertical slider for value.

By default, the editor opens with the “R” button selected. Use the
mode parameter to specify which mode is selected when the editor
opens. The possible values are ‘rgb’, ‘hsv’, ‘hsv2’, and ‘hsv3’.

You can also specify text to display in the color swatch (which can
use Python string formatting), and the font to use for the text, with
the text and font parameters, respectively.

To disable editing of the alpha value, set the edit_alpha parameter to
False.

8.1.6.3 RGBColorEditor()
Suitable for RGBColor
Default for RGBColor

Required parameters (none)
Optional parameters mapped

56 12-Sep-2007

Traits UI User Guide

Editors generated by RGBColorEditor() are identical in appearance
to those generated by ColorEditor(), but they are used for
RGBColor traits. See Section 8.1.6.1 on page 53 for details.

8.1.6.4 RGBAColorEditor()
Suitable for RGBAColor
Default for RGBAColor

Required parameters (none)
Optional parameters mapped

The editors generated by RGBAColorEditor() are similar to those
generated by ColorEditor(), with the addition of a vertical slider for
the alpha value. The operation of the editors is otherwise identical.
See Section 8.1.6.1 on page 53 for details.

Figure 25: RGBAColor editor showing pop-up panel

8.1.7 CompoundEditor()
Suitable for special
Default for “compound” traits

Required parameters (none)
Optional parameters auto_set

An editor generated by CompoundEditor() consists of a
combination of the editors for trait types that compose the
compound trait. The widgets for the compound editor are of the
style specified for the compound editor (simple, custom, etc.). The
editors shown in Figure 26 are for the following trait, whose value

12-Sep-2007 57

Traits UI User Guide

can be an integer between 1 and 6, or any of the letters ‘a’ through
‘f’:
compound_trait = Trait(1, Range(1, 6), 'a', 'b', 'c',
 'd', 'e', 'f')

Figure 26: Example compound editor styles

The auto_set keyword parameter is a Boolean value indicating
whether the trait being edited should be updated with every
keystroke (True) or only when the editor loses focus, i.e., when the
user tabs away from it or closes the window (False). The default
value of this parameter is True.

8.1.8 DirectoryEditor()
Suitable for Directory
Default for Directory

Required parameters (none)
Optional parameters (none)

A directory editor enables the user to display a Directory trait or set
it to some directory in the local system hierarchy. The four styles of
this editor are shown in Figure 27.

58 12-Sep-2007

Traits UI User Guide

Figure 27: Directory editor styles

In the simple and custom styles (which are identical), the current
value of the trait is displayed in a text box to the left of a Browse
button. The user can either type a new path directly into the text
box or use the button to bring up a platform-specific directory
browser dialog box, such as is shown in Figure 28.

Figure 28: Example directory browser dialog box for Microsoft Windows

When the user selects a directory in this browser and clicks OK,
control is returned to the original editor widget, which is
automatically populated with the new path string.

The text style of editor is simply a text box into which the user can
type a directory path. The ‘readonly style is identical to the text
style, except that the text box is not editable.

12-Sep-2007 59

Traits UI User Guide

No validation is performed on Directory traits; the user must
ensure that a typed-in value is in fact an actual directory on the
system.

8.1.9 EnumEditor()
Suitable for Enum, Any
Default for Enum

Required parameters for non-Enum traits:
values, or name and object

Optional parameters cols, evaluate, mode

The editors generated by EnumEditor() enable the user to pick a
single value from a closed set of values.

Figure 29: Enumeration editor styles

The simple style of editor is a drop-down list box.

The custom style can be a set of radio buttons, or a single-selection
list box. The default is radio buttons; specify mode=’list’ to use
a list box. Use the cols parameter to specify the number of columns
of radio buttons.

The text style is an editable text field; if the user enters a value that
is not in enumerated set, the background of the field turns red, to
indicate an error. You can specify a function to evaluate text input,
using the evaluate parameter.

The read-only style is the value of the trait as static text.

60 12-Sep-2007

Traits UI User Guide

If the trait attribute that is being edited is not an enumeration, you
must specify either the trait attribute (with the object and name
parameters), or the set of values to display (with the values
parameter). The values parameter can be a list, tuple, or dictionary,
or a “mapped” trait.

By default, an enumeration editor sorts its values alphabetically. To
specify a different order for the items, give it a mapping from the
normal values to ones with a numeric tag. The enumeration editor
sorts the values based on the numeric tags, and then strips out the
tags. For example:

Example 14: Enumeration editor with mapped values
from enthought.traits.api import HasTraits, Trait
from enthought.traits.ui.api import EnumEditor

Class EnumExample(HasTraits):
 priority = Trait(‘Medium’, ‘Highest’,
 ‘High’,
 ‘Medium’,
 ‘Low’,
 ‘Lowest’)

 view = View(Item(name=’priority’,
 editor=EnumEditor(values={
 ‘Highest’ : ‘1:Highest’,
 ‘High’ : ‘2:High’,
 ‘Medium’ : ‘3:Medium’,
 ‘Low’ : ‘4:Low’,
 ‘Lowest’ : ‘5:Lowest’, })))

The enumeration editor strips the characters up to and including
the colon. It assumes that all the items have the colon in the same
column; therefore, if some of your tags have multiple digits, you
should use zeros to pad the items with fewer digits.

8.1.10 FileEditor()
Suitable for File
Default for File

Required parameters (none)
Optional parameters filter, truncate_ext, auto_set

A file editor enables the user to display a File trait or set it to some
file in the local system hierarchy. The four styles of this editor are
shown in Figure 30.

12-Sep-2007 61

Traits UI User Guide

Figure 30: File editor styles

The behavior and appearance of file editors are very similar to
those of directory editors, except that the Browse button activates a
platform-specific file browser dialog box, rather than a directory
browser, such as is shown in Figure 31.

Figure 31: Example file browser dialog box for Microsoft Windows

If the filter or auto_set arguments are passed to the File() trait
factory, they are automatically passed through to FileEditor() for
the default editor for the trait. The filter parameter is a wildcard
string to filter filenames in the file dialog box. The auto_set
parameter is a Boolean that indicates whether the file dialog box
updates its selection after every keystroke.

The truncate_ext parameter is a Boolean that indicates whether the
file extension is removed from the returned filename. It is False by

62 12-Sep-2007

Traits UI User Guide

default, meaning that the filename is not modified before it is
returned.

8.1.11 FontEditor()
Suitable for Font
Default for Font

Required parameters (none)
Optional parameters (none)

A font editor enables the user to display a Font trait or edit it by
selecting one of the fonts provided by the underlying GUI toolkit.
The four styles of this editor are shown in Figure 32.

Figure 32: Font editor styles

In the simple style, the currently selected font appears in a display
similar to a text box, except that when the user clicks on it, a
platform-specific dialog box appears with a detailed interface, such
as is shown in Figure 33. When the user clicks OK, control returns
to the editor, which then displays the newly selected font.

12-Sep-2007 63

Traits UI User Guide

Figure 33: Example font dialog box for Microsoft Windows

In the simple style, an abbreviated version of the font dialog box is
displayed in-line. The user can either type the name of the font in
the text box or use the two drop-down lists to select a typeface and
size.

In the text style, the user must type the name of a font in the text
box provided. No validation is performed; the user must enter the
correct name of an available font. The read-only style is identical
except that the text box is not editable.

8.1.12 HTMLEditor()
Suitable for HTML, Str, Unicode
Default for HTML

Required parameters (none)
Optional parameters format_text

The “editor” generated by HTMLEditor() interprets and displays
text as HTML. It does not support the user editing the text that it
displays. It generates the same type of editor, regardless of the style
specified. Figure 34 shows an HTML editor in the upper pane, with
a code editor in the lower pane, displaying the uninterpreted text.

64 12-Sep-2007

Traits UI User Guide

Figure 34: Example HTML editor, with code editor showing original text

12-Sep-2007 65

Traits UI User Guide

NOTE: HTML support is limited in the wxWindows toolkit.
The set of tags supported by the wxWindows

implementation of the HTML editor is a subset of the
HTML 3.2 standard. It does not support style sheets or

complex formatting. Refer to the wxWindows
documentation for details.

If the format_text argument is True, then the HTML editor supports
basic implicit formatting, which it converts to HTML before
passing the text to the HTML interpreter. The implicit formatting
follows these rules:

• Indented lines that start with a dash (‘-‘) are converted to
unordered lists.

• Indented lines that start with an asterisk (‘*’) are converted to
ordered lists.

• Indented lines that start with any other character are converted
to code blocks.

• Blank lines are converted to paragraph separators.

The following text produces the same displayed HTML as in Figure
34, when format_text is True:
This is a code block:

 def foo (bar):
 print 'bar:', bar

This is an unordered list:
 - An
 - unordered
 - list

This is an ordered list:
 * One
 * Two
 * Three

8.1.13 ImageEnumEditor()
Suitable for Enum, Any
Default for (none)

Required parameters for non-Enum traits:
values, or name and object

Optional parameters path, klass, or module; cols, evaluate, suffix

66 12-Sep-2007

http://www.lpthe.jussieu.fr/~zeitlin/wxWindows/docs/wxwin_contents.html
http://www.lpthe.jussieu.fr/~zeitlin/wxWindows/docs/wxwin_contents.html

Traits UI User Guide

The editors generated by ImageEnumEditor() enable the user to
select an item in an enumeration by selecting an image that
represents the item.

Figure 35: Editor styles for image enumeration

The custom style of editor displays a set of images; the user selects
one by clicking it, and it becomes highlighted to indicate that it is
selected.

The simple style displays a button with an image for the currently
selected item. When the user clicks the button, a pop-up panel
displays a set of images, similar to the custom style. The user clicks
an image, which becomes the new image on the button.

The text style does not display images; it displays the text
representation of the currently selected item. The user must type
the text representation of another item to select it.

The read-only style displays the image for the currently selected
item, which the user cannot change.

The ImageEnumEditor() function accepts the same parameters as
the EnumEditor() function (see Section 8.1.9 on page 60), as well as
some additional parameters.

NOTE: Image enumeration editors do not use ImageResource.
Unlike most other images in the Traits and Traits UI

packages, images in the wxWindows implementation of
image enumeration editors do not use the PyFace

ImageResource class.

In the wxWindows implementation, image enumeration editors use
the following rules to locate images to use:

12-Sep-2007 67

Traits UI User Guide

1. Only GIF (.gif) images are currently supported.

2. The base file name of the image is the string representation of
the value, with spaces replaced by underscores and the suffix
argument, if any, appended. Note that suffix is not a file
extension, but rather a string appended to the base file name.
For example, if suffix is ‘_origin’ and the value is ‘top left’, the
image file name is top_left_origin.gif.

3. If the path parameter is defined, it is used to locate the file. It can
be absolute or relative to the file where the image enumeration
editor is defined.

4. If path is not defined and the klass parameter is defined, it is
used to locate the file. The klass parameter must be a reference to
a class. The editor searches for an images subdirectory in the
following locations:

o The directory that contains the module that defines the class.
o If the class was executed directly, the current working

directory.

5. If path and klass are not defined, and the module parameter is
defined, it is used to locate the file. The module parameter must
be a reference to a module. The editor searches for an images
subdirectory of the directory that contains the module.

6. If path, klass, and module are not defined, the editor searches for
an images subdirectory of the enthought.traits.ui.wx package.

7. If none of the above paths are defined, the editor searches for an
images directory that is a sibling of the directory from which
the application was run.

8.1.14 InstanceEditor()
Suitable for Instance, Property, self, ThisClass, This
Default for Instance, self, ThisClass, This

Required parameters (none)
Optional parameters cachable, editable, id, kind, label, name, object,

orientation, values, view

The editors generated by InstanceEditor() enable the user to select
an instance, or edit an instance, or both.

68 12-Sep-2007

Traits UI User Guide

8.1.14.1 Editing a Single Instance
In the simplest case, the user can modify the trait attributes of an
instance assigned to a trait attribute, but cannot modify which
instance is assigned.

Figure 36: Editor styles for instances

The custom style displays a user interface panel for editing the trait
attributes of the instance. The simple style displays a button, which
when clicked, opens a dialog box containing a user interface for the
instance. The kind parameter specifies the kind of dialog box to
open (see Section 4.1 on page 13). The label parameter specifies a
label for the button in the simple interface. The view parameter
specifies a view to use for the referenced instance’s user interface; if
this is not specified, the default view for the instance is used (see
Section 5.1.1 on page 19).

The text and read-only styles display the string representation of
the instance. They therefore cannot be used to modify the attributes
of the instance. A user could modify the assigned instance if they
happened to know the memory address of another instance of the
same type, which is unlikely. These styles can useful for
prototyping and debugging, but not for real applications.

8.1.14.2 Selecting Instances
You can add an option to select a different instance to edit. Use the
name and object parameters to specify the name of a trait attribute in
the context that contains a list of instances that can be selected or
edited. The object parameter defaults to ‘object’, and need not be
specified for a single-object context. (See Section 5.4 on page 23 for
an explanation of contexts.) Using these parameters results in a

12-Sep-2007 69

Traits UI User Guide

drop-drown list box containing a list of text representations of the
available instances. If the instances have a name trait attribute, it is
used for the string in the list; otherwise, a user-friendly version of
the class name is used.

For example, the following code defines a Team class and a Person
class. A Team has a roster of Persons, and a captain. In the view for
a team, the user can pick a captain and edit that person’s
information.

Example 15: Instance editor with instance selection
from enthought.traits.api \
 import HasStrictTraits, Int, Regex, Str,

class Person (HasStrictTraits):
 name = Str
 age = Int
 phone = Regex(value = '000-0000',
 regex = '\d\d\d[-]\d\d\d\d')

 traits_view = View('name', 'age', 'phone')

people = [
 Person(name = 'Dave', age = 39, phone = '555-1212'),
 Person(name = 'Mike', age = 28, phone = '555-3526'),
 Person(name = 'Joe', age = 34, phone = '555-6943'),
 Person(name = 'Tom', age = 22, phone = '555-7586'),
 Person(name = 'Dick', age = 63, phone = '555-3895'),
 Person(name = 'Harry', age = 46, phone = '555-3285'),
 Person(name = 'Sally', age = 43, phone = '555-8797'),
 Person(name = 'Fields', age = 31, phone = '555-3547')
]

class Team (HasStrictTraits):

 name = Str
 captain = Instance(Person)
 roster = List(Person)

 traits_view =
 View(Item('name'),
 Item('_'),
 Item('captain',
 label='Team Captain',
 editor =
 InstanceEditor(name = 'roster',
 editable = True),
 style = 'custom',
),
 buttons = ['OK'])

if __name__ == '__main__':

70 12-Sep-2007

Traits UI User Guide

 Team(name = 'Vultures',
 captain = people[0],
 roster = people).configure_traits()

Figure 37: User interface for Example 15

If you want the user to be able to select instances, but not modify
their contents, set the editable parameter to False. In that case, only
the selection list for the instances appears, without the user
interface for modifying instances.

8.1.14.3 Allowing Instances
You can specify what types of instances can be edited in an instance
editor, using the values parameter. This parameter is a list of items
describing the type of selectable or editable instances. These items
must be instances of subclasses of
enthought.traits.ui.api.InstanceChoiceItem. If you want to
generate new instances, put an InstanceFactoryChoice instance in
the values list that describes the instance to create. If you want
certain types of instances to be dropped on the editor, use an
InstanceDropChoice instance in the values list.

8.1.15 KivaFontEditor()
Suitable for KivaFont
Default for KivaFont

Required parameters (none)
Optional parameters (none)

12-Sep-2007 71

Traits UI User Guide

The editors generated by KivaFontEditor() are identical in
appearance and function to those generated by FontEditor() (see
Section 8.1.11 on page 63). They are used to display and edit
KivaFont traits.

8.1.16 ListEditor()
Suitable for List
Default for List16

Required parameters (none)
Optional parameters editor, rows, style, trait_handler,

use_notebook
The following parameters are used only if
use_notebook is True: deletable, dock_style,
export, page_name, select, view

The editors generated by ListEditor() enable the user to modify the
contents of a list, both by editing the individual items and by
adding, deleting, and reordering items within the list.

16 If a List is made up of HasTraits objects, a table editor is used
instead; see Section 8.2.3 on page 84.

72 12-Sep-2007

Traits UI User Guide

Figure 38: List editor styles

The simple style displays a single item at a time, with small arrows
on the right side to scroll the display. The custom style shows
multiple items. The number of items displayed is controlled by the
rows parameter; if the number of items in the list exceeds this value,
then the list display scrolls. The editor used for each item in the list
is determined by the editor and style parameters. The text style of
list editor is identical to the custom style, except that the editors for
the items are text editors. The read-only style displays the contents
of the list as static text.

By default, the items use the trait handler appropriate to the type of
items in the list. You can specify a different handler to use for the
items using the trait_handler parameter.

For the simple, custom, and text list editors, a button appears to the
left of each item editor; clicking this button opens a context menu
for modifying the list, as shown in Figure 39.

12-Sep-2007 73

Traits UI User Guide

Figure 39: List editor showing context menu

In addition to the four standard styles for list editors, fifth list
editor user interface option is available. If use_notebook is True, then
the list editor displays the list as a “notebook” of tabbed pages, one
for each item in the list, as shown in Figure 40. This style can be
useful in cases where the list items are instances with their own
views. Items in the list can be deleted if the deletable parameter is
True; items cannot be added through this style of editor.

Figure 40: Notebook list editor

8.1.17 NullEditor()
Suitable for controlling layout
Default for (none)

74 12-Sep-2007

Traits UI User Guide

Required parameters (none)
Optional parameters (none)

The NullEditor() factory generates a completely empty panel. It is
used by the Spring subclass of Item, to generate a blank space that
uses all available extra space along its layout orientation. You can
also use it to create a blank area of a fixed height and width.

8.1.18 RangeEditor()
Suitable for Range
Default for Range

Required parameters (none)
Optional parameters auto_set, cols, enter_set, format, high_label,

high_name, label_width, low_label,
low_name, mode

The editors generated by RangeEditor() enable the user to specify
numeric values within a range. The widgets used to display the
range vary depending on both the numeric type and the size of the
range, as described in Table 7 and shown in Figure 41. If one limit
of the range is unspecified, then a text editor is used.

Table 7: Range editor widgets
Simple Custom Text Read-

only
Integer: Small
Range (Size 0-16)

Slider with
text field

Radio
buttons

Text
field

Static
text

Integer:
Medium Range
(Size 17-101)

Slider with
text field

Slider with
text field

Text
field

Static
text

Integer:
Large Range
(Size > 101)

Spin box Spin box Text
field

Static
text

Floating Point:
Small Range
(Size <= 100.0)

Slider with
text field

Slider with
text field

Text
field

Static
text

12-Sep-2007 75

Traits UI User Guide

Simple Custom Text Read-
only

Floating Point:
Large Range
(Size > 100.0)

Large-range
slider

Large-range
slider

Text
field

Static
text

Figure 41: Range editor widgets

In the large-range slider, the arrows on either side of the slider
move the editable range, so that the user can move the slider more
precisely to the desired value.

You can override the default widget for each type of editor using
the mode parameter, which can have the following values:

• ‘auto’—The default widget, as described in Table 7
• ‘slider’—Simple slider with text field
• ‘xslider’—Large-range slider with text field
• ‘spinner’—Spin box
• ‘enum’—Radio buttons
• ‘text’—Text field

You can set the limits of the range dynamically, using the low_name
and high_name parameters to specify trait attributes that contain the
low and high limit values; use low_label, high_label and label_width to
specify labels for the limits.

76 12-Sep-2007

Traits UI User Guide

8.1.19 SetEditor()
Suitable for List
Default for none

Required parameters Either values or name
Optional parameters can_move_all, left_column_title, object,

ordered, right_column_title,

In the editors generated by SetEditor(), the user can select a subset
of items from a larger set. The two lists are displayed in list boxes,
with the candidate set on the left and the selected set on the right.
The user moves an item from one set to the other by selecting the
item and clicking a direction button (> for left-to-right and < for
right-to-left).

Additional buttons can be displayed, depending on two Boolean
parameters:

• If can_move_all is True, additional buttons appear, whose
function is to move all items from one side to the other (>> for
left-to-right and << for right-to-left).

• If ordered is True, additional buttons appear, labeled Move up
and Move down, which affect the position of the selected item
within the set in the right list box.

Figure 42: Set editor showing all possible buttons

You can specify the set of candidate items in either of two ways:

• Set the values parameter to a list, tuple, dictionary, or mapped
trait.

12-Sep-2007 77

Traits UI User Guide

• Set the name parameter to the name of a trait attribute that
contains the list; use the object parameter to specify the object in
the context whose attribute is name. The default value for object
is ‘object’, so you do not need to specify it if the target object is
the only one in the context. (See Section 5.4 on page 23 for
information on contexts.)

8.1.20 ShellEditor()
Suitable for special
Default for PythonValue

Required parameters (none)
Optional parameters (none)

The editor generated by ShellEditor() displays an interactive
Python shell.

Figure 43: Python shell editor

8.1.21 TextEditor()
Suitable for all
Default for Str, String, Password, Unicode, Int, Float,

Dict, CStr, CUnicode, and any trait that
does not have a specialized TraitHandler

Required parameters (none)
Optional parameters auto_set, enter_set, evaluate, evaluate_name,

mapping, multi_line, password

78 12-Sep-2007

Traits UI User Guide

The editor generated by TextEditor() displays a text box. For the
custom style, it is a multi-line field; for the read-only style, it is
static text. If password is True, the text is obscured.

Figure 44: Text editor styles for integers

Figure 45: Text editor styles for strings

Figure 46: Text editor styles for passwords

You can specify whether the trait being edited is updated on every
keystroke (auto_set=True) or when the user presses the Enter
key (enter_set=True). If auto_set and enter_set are False, the trait
is updated when the user shifts the input focus to another widget.

12-Sep-2007 79

Traits UI User Guide

You can specify a mapping from user input values to other values
with the mapping parameter. You can specify a function to evaluate
user input, either by passing a reference to it in the evaluate
parameter, or by passing the name of a trait that references it in the
evaluate_name parameter.

8.1.22 TupleEditor()
Suitable for Tuple
Default for Tuple

Required parameters (none)
Optional parameters cols, labels, traits

The simple and custom editors generated by TupleEditor() provide
a widget for each slot of the tuple being edited, based on the type of
data in the slot. The text and read-only editors edit or display the
text representation of the tuple.

Figure 47: Tuple editor styles

You can specify the number of columns to use to lay out the
widgets with the cols parameter. You can specify labels for the
widgets with the labels parameter. You can also specify trait
definitions for the slots of the tuple; however, this is usually
implicit in the tuple being edited.

80 12-Sep-2007

Traits UI User Guide

8.2 Advanced Trait Editors
The editor factories described in the following sections are more
advanced than those in the previous section. In some cases, they
require writing additional code; in others, the editors they generate
are intended for use in complex user interfaces, in conjunction with
other editors.

8.2.1 CustomEditor()
Suitable for Special cases
Default for (none)

Required parameters factory
Optional parameters args

Use CustomEditor() to create an “editor” that is a non-Traits-based
custom control. The factory parameter must be a function that
generates the custom control. The function must have the following
signature:

factory_function(window_parent, editor, *args,
**kwargs)

• window_parent—The parent window for the control
• editor—The editor object created by CustomEditor()

Additional arguments, if any, can be passed as a tuple in the args
parameter of CustomEditor().

For an example of using CustomEditor(), run
NumericModelExplorer_demo.py in the “demos/Traits UI
Demo/Advanced” subdirectory of the Traits UI package directory.
Examine the implementation of the NumericModelExplorer class in
the enthought.model.numeric_model_explorer module.
CustomEditor() is used to generate the plots in the user interface.

8.2.2 KeyBindingEditor()
The KeyBindingEditor() factory differs from other trait editor
factories because it generates an editor, not for a single attribute,
but for an object of a particular class,
enthought.traits.ui.key_bindings.KeyBindings. A KeyBindings
object is a list of bindings between key codes and handler methods.

12-Sep-2007 81

Traits UI User Guide

A key bindings editor is a separate dialog box that displays the
string representation of each key code and a description of the
corresponding method. The user can click a text box, and then
press a key or key combination to associate that key press with a
method.

Figure 48: Key binding editor dialog box

The following code example creates a user interface containing a
code editor with associated key bindings, and a button that invokes
the key binding editor.

Example 16: Code editor with key binding editor
from enthought.traits.api \
 import Button, Code, HasPrivateTraits, Str

from enthought.traits.ui.api \
 import View, Item, Group, Handler, CodeEditor

from enthought.traits.ui.key_bindings \
 import KeyBinding, KeyBindings

from enthought.traits.ui.menu \
 import NoButtons

key_bindings = KeyBindings(
 KeyBinding(binding1 = 'Ctrl-s',
 description = 'Save to a file',
 method_name = 'save_file'),

82 12-Sep-2007

Traits UI User Guide

 KeyBinding(binding1 = 'Ctrl-r',
 description = 'Run script',
 method_name = 'run_script'),
 KeyBinding(binding1 = 'Ctrl-k',
 description = 'Edit key bindings',
 method_name = 'edit_bindings')
)

Traits UI Handler class for bound methods
class CodeHandler (Handler):

 def save_file (self, info):
 info.object.status = "save file"

 def run_script (self, info):
 info.object.status = "run script"

 def edit_bindings (self, info):
 info.object.status = "edit bindings"
 key_bindings.edit_traits()

class KBCodeExample (HasPrivateTraits):

 code = Code
 status = Str
 kb = Button(label='Edit Key Bindings')

 view = View(Group (
 Item('code',
 style = 'custom',
 resizable = True,
 editor = CodeEditor(
 key_bindings =
 key_bindings)),
 Item('status', style='readonly'),
 'kb',
 orientation = 'vertical',
 show_labels = False,
),
 id = 'KBCodeExample',
 title = 'Code Editor With Key Bindings',
 resizable = True,
 buttons = NoButtons,
 handler = CodeHandler())

 def _kb_fired(self, event):
 key_bindings.edit_traits()

if __name__ == '__main__':
 KBCodeExample().configure_traits()

12-Sep-2007 83

Traits UI User Guide

8.2.3 TableEditor()
Suitable for List(InstanceType)
Default for (none)

Required parameters columns or columns_name
Optional parameters See Traits API Reference,

enthought.traits.ui.wx.table_editor
.ToolkitEditorFactory attributes.

TableEditor() generates a editor that displays instances in a list as
rows in a table, with attributes of the instances as values in
columns. You must specify the columns in the table. Optionally,
you can provide filters for filtering the set of displayed items, and
you can specify a wide variety of options for interacting with and
formatting the table.

Figure 49: Table editor

To see the code that results in Figure 49, refer to
TableEditor_demo.py in the
demos/Traits UI Demo/Standard Editors subdirectory of
the Traits UI package. This example demonstrates object columns,
expression columns, filters, searching, and adding and deleting
rows.

The parameters for TableEditor() can be grouped in several broad
categories, described in the following sections.

• Specifying columns
• Managing items

84 12-Sep-2007

Traits UI User Guide

• Editing the table or items
• Controlling the table display
• Controlling table formatting

8.2.3.1 Specifying Columns
You must provide the TableEditor() factory with a list of columns
for the table. You can specify this list directly, as the value of the
columns parameter, or indirectly, in a context attribute referenced
by the columns_name parameter.

The items in the list must be instances of
enthought.traits.ui.api.TableColumn, or of a subclass of
TableColumn. Some subclasses of TableColumn that are provided
by the Traits UI package include ObjectColumn, ListColumn,
NumericColumn, and ExpressionColumn. (See the Traits API
Reference for details about these classes.) In practice, most columns
are derived from one of these subclasses, rather than from
TableColumn. For the usual case of editing trait attributes on
objects in the list, use ObjectColumn. You must specify the name
parameter to the ObjectColumn() constructor, referencing the name
of the trait attribute to be edited.

You can specify additional columns that are not initially displayed
using the other_columns parameter. If the configurable parameter is
True (the default), a Set user preferences for table icon ()
appears on the table’s toolbar. When the user clicks this icon, a
dialog box opens that enables the user to select and order the
columns displayed in the table, as shown in Figure 50. (The dialog
box is implemented using a set editor; see Section 8.1.19 on page
77.) Any columns that were specified in the other_columns
parameter are listed in the left list box of this dialog box, and can be
displayed by moving them into the right list box.

12-Sep-2007 85

Traits UI User Guide

Figure 50: Column selection dialog box for a table editor

8.2.3.2 Managing Items
Table editors support several mechanisms to help users locate
items of interest.

8.2.3.2.1 Organizing Items

Table editors provide two mechanisms for the user to organize the
contents of a table: sorting and reordering. The user can sort the
items based on the values in a column, or the user can manually
order the items. Usually, only one of these mechanisms is used in
any particular table, although the Traits UI package does not
enforce a separation. If the user has manually ordered the items,
sorting them would throw away that effort.

If the reorderable parameter is True, Move up () and Move down (
) icons appear in the table toolbar. Clicking one of these icons

changes the position of the selected item.

If the sortable parameter is True (the default), then the user can sort
the items in the table based on the values in a column by clicking
the header of that column.

86 12-Sep-2007

Traits UI User Guide

• On the first click, the items are sorted in ascending order. The
characters “>>” appear in the column header to indicate that the
table is sorted ascending on this column’s values.

• On the second click, the items are sorted descending order. The
characters “<<” appear in the column header to indicate that the
table is sorted descending on this column’s values.

• On the third click, the items are restored to their original order,
and the column header is undecorated.

If the sort_model parameter is true, the items in the list being edited
are sorted when the table is sorted. The default value is False, in
which case, the list order is not affected by sorting the table.

If sortable is True and sort_model is False, then a Do not sort
columns icon () appears in the table toolbar. Clicking this icon
restores the original sort order.

If the reverse parameter is True, then the items in the underlying list
are maintained in the reverse order of the items in the table
(regardless of whether the table is sortable or reorderable).

8.2.3.2.2 Filtering and Searching

You can provide an option for the user to apply a filter to a table, so
that only items that pass the filter are displayed. This feature can be
very useful when dealing with lengthy lists. To add the filtering
feature, use the filters parameter to specify a list of table filters,
which must be instances of enthought.traits.ui.api.TableFilter, or
of a subclass of TableFilter. Some subclasses of TableFilter that are
provided by the Traits UI package include EvalTableFilter,
RuleTableFilter, and MenuTableFilter. (See the Traits API Reference
for details about these classes.) The Traits UI package also provides
instances of these filter classes as “templates”, which cannot be
edited or deleted, but which can be used as models for creating
new filters.

When filters is specified, a drop-down list box appears in the table
toolbar, containing the filters that are available for the user to
apply. When the user selects a filter, it is automatically applied to
the table. A status message to the right of the filters list indicates
what subset of the items in the table is currently displayed. A
special item in the filter list, named Customize, is always provided;
clicking this item opens a dialog box that enables the user to create
new filters, or to edit or delete existing filters (except templates).

12-Sep-2007 87

Traits UI User Guide

If you want a particular filter to be applied to the table when it is
first displayed, use the filter parameter to specify it. If this
parameter is None or unspecified, all items are displayed in the
table, and an item named No filter is selected in the filter list.

You can also provide an option for the user to use filters to search
the table. If you set the search parameter to an instance of
TableFilter (or of a subclass), a Search table icon () appears on
the table toolbar. Clicking this icon opens a Search for dialog box,
which enables the user to specify filter criteria, to browse through
matching items, or select all matching items.

8.2.3.2.3 Interacting with Items

As the user clicks in the table, you may wish to enable certain
program behavior.

You can use the selected parameter to specify the name of a trait
attribute on the current context object to synchronize with the
user’s current selection. For example, you can enable or disable
menu items or toolbar icons depending on which item is selected.
The synchronization is two-way; you can set the attribute
referenced by selected to force the table to select a particular item.

The on_select and on_dclick parameters are callables to invoke when
the user selects or double-clicks an item, respectively.

You can define a shortcut menu that opens when the user right-
clicks an item. Use the menu parameter to specify a Traits UI or
PyFace Menu, containing Action objects for the menu commands.

8.2.3.3 Editing the Table
The Boolean editable parameter controls whether the table or its
items can be modified in any way. This parameter defaults to True,
except when the style is ‘readonly’. Even when the table as a whole
is editable, you can control whether individual columns are
editable through the editable attribute of TableColumn.

8.2.3.3.1 Adding Items

To enable users to add items to the table, specify as the row_factory
parameter a callable that generates an object that can be added to
the list in the table; for example, the class of the objects in the table.

88 12-Sep-2007

Traits UI User Guide

When row_factory is specified, an Insert new item icon () appears
in the table toolbar, which generates a new row in the table.
Optionally, you can use row_factory_args and row_factory_kw to
specify positional and keyword arguments to the row factory
callable.

To save users the trouble of mousing to the toolbar, you can enable
them to add an item by selecting the last row in the table. To do
this, set auto_add to True. In this case, the last row is blank until the
user sets values. Pressing Enter creates the new item and generates
a new, blank last row.

8.2.3.3.2 Deleting Items

The deletable parameter controls whether items can be deleted from
the table. This parameter can be a Boolean (defaulting to False) or a
callable; the callable must take an item as an argument and handle
deleting it. If deletable is not False, a Delete current item icon ()
appears on the table toolbar; clicking it deletes the item
corresponding to the row that is selected in the table.

8.2.3.3.3 Modifying Items

The user can modify items in two ways.

• For columns that are editable, the user can change an item’s
value directly in the table. The editor used for each attribute in
the table is the simple style of editor for the corresponding trait.

• Alternatively, you can specify a View for editing instances,
using the edit_view parameter. The resulting user interface
appears in a sub-panel to the right or below the table
(depending on the orientation parameter). You can specify a
handler to use with the view, using edit_view_handler. You can
also specify the subpanel’s height and width, with
edit_view_height and edit_view_width.

8.2.3.4 Defining the Layout
Some of the parameters for the TableEditor() factory affect global
aspects of the display of the table.

• auto_size—If True, the cells of the table automatically adjust to
the optimal size based on their contents.

12-Sep-2007 89

Traits UI User Guide

• orientation—The layout of the table relative to its associated
editor pane. Can be ‘horizontal’ or ‘vertical’.

• rows—The number of visible rows in the table.
• show_column_labels—If True (the default), displays labels for the

columns. You can specify the labels to use in the column
definitions; otherwise, a “user friendly” version of the trait
attribute name is used.

8.2.3.5 Defining the Format
The TableEditor() factory supports a variety of parameters to
control the visual formatting of the table, such as colors, fonts, and
sizes for lines, cells, and labels. For details, refer to the Traits API
Reference, enthought.traits.ui.wx.table_editor.ToolkitEditorFactory
attributes.

You can also specify formatting options for individual table
columns when you define them.

8.2.4 TreeEditor()
Suitable for Instance
Default for (none)

Required parameters nodes (required except for shared editors;
see Section 8.2.4.2.5)

Optional parameters auto_open, editable, editor, hide_root,
icon_size, lines_mode, on_dclick, on_select,
orientation, selected, shared_editor,
show_icons

TreeEditor() generates a hierarchical tree control, consisting of
nodes. It is useful for cases where objects contain lists of other
objects.

The tree control is displayed in one pane of the editor, and a user
interface for the selected object is displayed in the other pane. The
layout orientation of the tree and the object editor is determined by
the orientation parameter of TreeEditor(), which can be ‘horizontal’
or ‘vertical’.

90 12-Sep-2007

Traits UI User Guide

You must specify the types of nodes that can appear in the tree
using the nodes parameter, which must be a list of instances of
TreeNode (or of subclasses of TreeNode).

Figure 51: Tree editor

The following example shows the code that produces the editor
shown in Figure 51.

Example 17: Code for example tree editor
from enthought.traits.api \
 import HasTraits, Str, Regex, List, Instance
from enthought.traits.ui.api \
 import TreeEditor, TreeNode, View, Item, VSplit, \
 HGroup, Handler, Group
from enthought.traits.ui.menu \
 import Menu, Action, Separator
from enthought.traits.ui.wx.tree_editor \
 import NewAction, CopyAction, CutAction, \
 PasteAction, DeleteAction, RenameAction

DATA CLASSES

class Employee (HasTraits):
 name = Str('<unknown>')
 title = Str
 phone = Regex(regex = r'\d\d\d-\d\d\d\d')

 def default_title (self):
 self.title = 'Senior Engineer'

class Department (HasTraits):
 name = Str('<unknown>')
 employees = List(Employee)

12-Sep-2007 91

Traits UI User Guide

class Company (HasTraits):
 name = Str('<unknown>')
 departments = List(Department)
 employees = List(Employee)

class Owner (HasTraits):
 name = Str('<unknown>')
 company = Instance(Company)

INSTANCES

jason = Employee(
 name = 'Jason',
 title = 'Engineer',
 phone = '536-1057')

mike = Employee(
 name = 'Mike',
 title = 'Sr. Marketing Analyst',
 phone = '536-1057')

dave = Employee(
 name = 'Dave',
 title = 'Sr. Engineer',
 phone = '536-1057')

susan = Employee(
 name = 'Susan',
 title = 'Engineer',
 phone = '536-1057')

betty = Employee(
 name = 'Betty',
 title = 'Marketing Analyst')

owner = Owner(
 name = 'wile',
 company = Company(
 name = 'Acme Labs, Inc.',
 departments = [
 Department(
 name = 'Marketing',
 employees = [mike, betty]
),
 Department(
 name = 'Engineering',
 employees = [dave, susan, jason]
)
],
 employees = [dave, susan, mike, betty, jason]
)
)

92 12-Sep-2007

Traits UI User Guide

View for objects that aren't edited
no_view = View()

Actions used by tree editor context menu

def_title_action = Action(name='Default title',
 action = 'object.default')

dept_action = Action(
 name='Department',
 action='handler.employee_department(editor,object)')

View used by tree editor
employee_view = View(
 VSplit(
 HGroup('3', 'name'),
 HGroup('9', 'title'),
 HGroup('phone'),
 id = 'vsplit'),
 id = 'enthought.traits.doc.example.treeeditor',
 dock = 'vertical')

class TreeHandler (Handler):

 def employee_department (self, editor, object):
 dept = editor.get_parent(object)
 print '%s works in the %s department.' %\
 (object.name, dept.name)

Tree editor
tree_editor = TreeEditor(
 nodes = [
 TreeNode(node_for = [Company],
 auto_open = True,
 children = '',
 label = 'name',
 view = View(Group('name',
 orientation='vertical',
 show_left=True))),
 TreeNode(node_for = [Company],
 auto_open = True,
 children = 'departments',
 label = '=Departments',
 view = no_view,
 add = [Department]),
 TreeNode(node_for = [Company],
 auto_open = True,
 children = 'employees',
 label = '=Employees',
 view = no_view,
 add = [Employee]),
 TreeNode(node_for = [Department],

12-Sep-2007 93

Traits UI User Guide

 auto_open = True,
 children = 'employees',
 label = 'name',
 menu = Menu(NewAction,
 Separator(),
 DeleteAction,
 Separator(),
 RenameAction,
 Separator(),
 CopyAction,
 CutAction,
 PasteAction),
 view = View(Group ('name',
 orientation='vertical',
 show_left=True)),
 add = [Employee]),
 TreeNode(node_for = [Employee],
 auto_open = True,
 label = 'name',
 menu=Menu(NewAction,
 Separator(),
 def_title_action,
 dept_action,
 Separator(),
 CopyAction,
 CutAction,
 PasteAction,
 Separator(),
 DeleteAction,
 Separator(),
 RenameAction),
 view = employee_view)
]
)
The main view
view = View(
 Group(
 Item(
 name = 'company',
 id = 'company',
 editor = tree_editor,
 resizable = True),
 orientation = 'vertical',
 show_labels = True,
 show_left = True,),
 title = 'Company Structure',
 id = \
 'enthought.traits.ui.tests.tree_editor_test',
 dock = 'horizontal',
 drop_class = HasTraits,
 handler = TreeHandler(),
 buttons = ['Undo', 'OK', 'Cancel'],
 resizable = True,

94 12-Sep-2007

Traits UI User Guide

 width = .3,
 height = .3)

if __name__ == '__main__':
 owner.configure_traits(view = view)

8.2.4.1 Defining Nodes
For details on the attributes of the TreeNode class, refer to the
Traits API Reference.

You must specify the classes whose instances the node type applies
to. Use the node_for attribute of TreeNode to specify a list of
classes; often, this list contains only one class. You can have more
than one node type that applies to a particular class; in this case,
each object of that class is represented by multiple nodes, one for
each applicable node type. In Figure 51, one Company object is
represented by the nodes labeled “Acme Labs, Inc.”,
“Departments”, and “Employees”.

8.2.4.1.1 A Node Type without Children

To define a node type without children, set the children attribute of
TreeNode to the empty string. In Example 16, the following lines
define the node type for the node that displays the company name,
with no children:
 TreeNode(node_for = [Company],
 auto_open = True,
 children = '',
 label = 'name',
 view = View(Group('name',
 orientation='vertical',
 show_left=True))),

8.2.4.1.2 A Node Type with Children

To define a node type that has children, set the children attribute of
TreeNode to the name of a trait on the object that this is a node for;
the named trait contain a list of the object’s children. In Example 16,
the following lines define the node type for the node that contains
the departments of a company. The node type is for instances of
Company, and ‘departments’ is a trait attribute of Company.
 TreeNode(node_for = [Company],
 auto_open = True,
 children = 'departments',

12-Sep-2007 95

Traits UI User Guide

 label = '=Departments',
 view = no_view,
 add = [Department]),

8.2.4.1.3 Setting the Label of a Tree Node

The label attribute of Tree Node can work one of two ways: as a
trait attribute name, or as a literal string.

If the value is a simple string, it is interpreted as the name of a trait
attribute on the object that the node is for, whose value is used as
the label. This approach is used in the code snippet in Section
8.2.4.1.1.

If the value is a string that begins with an equals sign (‘=’), the rest
of the string is used as the literal label. This approach is used in
Section 8.2.4.1.2.

You can also specify a callable to format the label of the node, using
the formatter attribute of TreeNode.

8.2.4.2 Defining Operations on Nodes
You can use various attributes of TreeNode to define operations or
behavior of nodes.

8.2.4.2.1 Shortcut Menus on Nodes

Use the menu attribute of TreeNode to define a shortcut menu that
opens when the user right-clicks on a node. The value is a Traits UI
or PyFace menu containing Action objects for the menu commands.
In Example 16, the following lines define the node type for
employees, including a shortcut menu for employee nodes:
 TreeNode(node_for = [Department],
 auto_open = True,
 children = 'employees',
 label = 'name',
 menu = Menu(NewAction,
 Separator(),
 DeleteAction,
 Separator(),
 RenameAction,
 Separator(),
 CopyAction,
 CutAction,
 PasteAction),

96 12-Sep-2007

Traits UI User Guide

 view = View(Group ('name',
 orientation='vertical',
 show_left=True)),
 add = [Employee]),

8.2.4.2.2 Allowing the Hierarchy to Be Modified

If a node contains children, you can allow objects to be added to its
set of children, through operations such as dragging and dropping,
copying and pasting, or creating new objects. Two attributes
control these operations: add and move. Both are lists of classes.
The add attribute contains classes that can be added by any means,
including creation. The code snippet in the preceding section
(8.2.4.2.1) includes an example of the add attribute. The move
attribute contains classes that can be dragged and dropped, but not
created. The move attribute need not be specified if all classes that
can be moved can also be created (and therefore are specified in the
add value).

NOTE: The ‘add’ attribute alone is not enough to create objects.
Specifying the add attribute makes it possible for objects
of the specified classes to be created, but by itself, it does

not provide a way for the user to do so. In the code
snippet in the preceding section (8.2.4.2.1), ‘NewAction’ in

the Menu constructor call defines a New > Employee
menu item that creates Employee objects.

In the example tree editor, users can create new employees using
the New > Employee shortcut menu item, and they can drag an
employee node and drop it on a department node. The
corresponding object becomes a member of the appropriate list.

You can specify the label that appears on the New submenu when
adding a particular type of object, using the name attribute of
TreeNode. Note that you set this attribute on the tree node type
that will be added by the menu item, not the node type that
contains the menu item. For example, to change New > Employee
to New > Worker, set name = 'Worker' on the tree node whose
node_for value contains Employee. If this attribute is not set, the
class name is used.

You can determine whether a node or its children can be copied,
renamed, or deleted, by setting the following attributes on
TreeNode:

12-Sep-2007 97

Traits UI User Guide

• copy: If True (the default), the object’s children can be copied.
• delete: If True (the default), the object’s children can be deleted.
• delete_me: If True (the default), the object can be deleted.
• rename: If True (the default), the object’s children can be

renamed.
• rename_me: If True (the default), the object can be renamed.

As with add, you must also define actions to perform these
operations.

8.2.4.2.3 Behavior on Nodes

As the user clicks in the tree, you may wish to enable certain
program behavior.

You can use the selected parameter to specify the name of a trait
attribute on the current context object to synchronize with the
user’s current selection. For example, you can enable or disable
menu items or toolbar icons depending on which node is selected.
The synchronization is two-way; you can set the attribute
referenced by selected to force the tree to select a particular node.

The on_select and on_dclick parameters are callables to invoke when
the user selects or double-clicks a node, respectively.

8.2.4.2.4 Expanding and Collapsing Nodes

You can control some aspects of expanding and collapsing of nodes
in the tree.

The integer auto_open parameter of TreeEditor() determines how
many levels are expanded below the root node, when the tree is
first displayed. For example, if auto_open is 2, then two levels below
the root node are displayed (whether or not the root node itself is
displayed, which is determined by hide_root).

The Boolean auto_open attribute of TreeNode determines whether
nodes of that type are expanded when they are displayed (at any
time, not just on initial display of the tree). For example, suppose
that a tree editor has auto_open setting of 2, and contains a tree node
at level 3 whose auto_open attribute is True. The nodes at level 3
are not displayed initially, but when the user expands a level 2
node, displaying the level 3 node, that’s nodes children are
automatically displayed also. Similarly, the number of levels of
nodes initially displayed can be greater than specified by the tree

98 12-Sep-2007

Traits UI User Guide

editor’s auto_open setting, if some of the nodes have auto_open set
to True.

If the auto_close attribute of TreeNode is set to True, then when a
node is expanded, any siblings of that node are automatically
closed. In other words, only one node of this type can be expanded
at a time.

8.2.4.2.5 Editing Objects

One pane of the tree editor displays a user interface for editing the
object that is selected in the tree. You can specify a View to use for
each node type using the view attribute of TreeNode. If you do not
specify a view, then the default view for the object is displayed. To
suppress the editor pane, set the editable parameter of TreeEditor()
to False; in this case, the objects represented by the nodes can still
be modified by other means, such as shortcut menu commands.

You can define multiple tree editors that share a single editor pane.
Each tree editor has its own tree pane. Each time the user selects a
different node in any of the sharing tree controls, the editor pane
updates to display the user interface for the selected object. To
establish this relationship, do the following:

1. Call TreeEditor() with the shared_editor parameter set to True,
without defining any tree nodes. The object this call returns
defines the shared editor pane. For example:

my_shared_editor_pane = TreeEditor(shared_editor=True)

2. For each editor that uses the shared editor pane:

o Set the shared_editor parameter of TreeEditor() to True.
o Set the editor parameter of TreeEditor() to the object

returned in Step 1.

For example:
shared_tree_1 = TreeEditor(shared_editor = True,
 editor = my_shared_editor_pane,
 nodes = [TreeNode(# …
)
]
)
shared_tree_2 = TreeEditor(shared_editor = True,
 editor = my_shared_editor_pane,
 nodes = [TreeNode(# …
)
]
)

12-Sep-2007 99

Traits UI User Guide

8.2.4.3 Defining the Format
Several parameters to TreeEditor() affect the formatting of the tree
control:

• show_icons: If True (the default), icons are displayed for the
nodes in the tree.

• icon_size: A two-integer tuple indicating the size of the icons for
the nodes.

• lines_mode: Determines whether lines are displayed between
related nodes. The valid values are ‘on’, ‘off’, and ‘appearance’
(the default). When set to ‘appearance’, lines are displayed
except on Posix-based platforms.

• hide_root: If True, the root node in the hierarchy is not displayed.
If this parameter were specified as True in Example 16, the node
in Figure 51 that is labeled “Acme Labs, Inc.” would not appear.

Additionally, several attributes of TreeNode also affect the display
of the tree:

• icon_path: A directory path to search for icon files. This path
can be relative to the module it is used in.

• icon_item: The icon for a leaf node.
• icon_open: The icon for a node with children whose children

are displayed.
• icon_group: The icon for a node with children whose children

are not displayed.

The wxWindows implementation automatically detects the bitmap
format of the icon.

8.2.5 DropEditor()
Suitable for Instance traits
Default for (none)

Required parameters (none)
Optional parameters binding, klass, readonly

DropEditor() generates an editor that is a text field containing a
string representation of the trait attribute’s value. The user can
change the value assigned to the attribute by dragging and
dropping an object on the text field, for example, a node from a tree
editor. If the readonly parameter is True (the default), the user
cannot modify the value by typing in the text field.

100 12-Sep-2007

Traits UI User Guide

You can restrict the class of objects that can be dropped on the
editor by specifying the klass parameter.

You can specify that the dropped object must be a binding
(enthought.naming.api.Binding) by setting the binding parameter
to True. If so, the bound object is retrieved and checked to see if it
can be assigned to the trait attribute.

If the dropped object (or the bound object associated with it) has a
method named drop_editor_value(), it is called to obtain the value
to assign to the trait attribute. Similarly, if the object has a method
named drop_editor_update(), it is called to update the value
displayed in the text editor. This method requires one parameter,
which is the GUI control for the text editor.

8.2.6 DNDEditor()
Suitable for Instance traits
Default for (none)

Required parameters (none)
Optional parameters drag_target, drop_target, image

DNDEditor() generates an editor that represents a file or a
HasTraits instance as an image that supports dragging and
dropping. Depending on the editor style, the editor can be a drag
source (the user can set the value of the trait attribute by dragging a
file or object onto the editor, for example, from a tree editor), or
drop target (the user can drag from the editor onto another target).

Table 8: Drag-and-drop editor style variations

Editor Style Drag Source? Drop Target?

Simple Yes Yes

Custom No Yes

Read-only Yes No

12-Sep-2007 101

Traits UI User Guide

8.2.7 ValueEditor()
Suitable for (any)
Default for (none)

Required parameters (none)
Optional parameters auto_open

ValueEditor() generates a tree editor that displays Python values
and objects, including all the objects’ members. For example, Figure
52 shows a value editor that appears in the Frame-Based Inspector
(FBI), in this case showing the local variables when FBI is invoked.

Figure 52: Value editor from FBI

102 12-Sep-2007

Traits UI User Guide

9 Advanced Editor Concepts

9.1 Interacting with an Editor
Through the UI Object

9.1.1 Accessing Trait Editors Using Item
IDs

9.1.2 Controlling Editor Status Using
‘enabled’ and ‘disabled’

9.2 Defining a Custom Editor

9.2.1 Defining the Editor Factory

9.2.1.1 Standard Traits: format_str, format_func,
is_grid_cell

12-Sep-2007 103

Traits UI User Guide

9.2.1.2 Standard methods: init(), simple_editor(),
custom_editor(), text_editor(),
readonly_editor(), format_func()

9.2.2 Defining the Editor

9.2.2.1 Standard Traits: ui, object, name, old_value,
description, control, enabled, factory,
updating, value, str_value

9.2.2.2 Standard methods: init(), dispose(),
update_editor(), error(), string_value(),
save_prefs(), restore_prefs(),
get_undo_item()

104 12-Sep-2007

Traits UI User Guide

10Miscellaneous Advanced
Topics

10.1The UI Object

10.2The UIInfo Object Revisited

10.3 Defining a Custom Help
Handler

10.4 Saving and Restoring User
Preferences

(which preferences can be saved, how to save and restore
preferences)

10.4.1 Enabling User Preferences for a View

10.4.1.1 The View id

12-Sep-2007 105

Traits UI User Guide

10.4.1.2 The Item ID

106 12-Sep-2007

Traits UI User Guide

11Tips, Tricks and Gotchas

11.1Getting and Setting Model View
Elements

For some applications, it can be necessary to retrieve or manipulate
the View objects associated with a given model object. The
HasTraits class defines two methods for this purpose: trait_views()
and trait_view().

11.1.1 trait_views()
The trait_views() method, when called without arguments, returns
a list containing the names of all Views defined in the object's class.
For example, if sam is an object of type SimpleEmployee3 (from
Example 6 on page 20), the method call sam.trait_views()
returns the list ['all_view', 'traits_view'].

Alternatively, a call to trait_views(view_element_type) returns a list
of all named instances of class view_element_type defined in the
object’s class. The possible values of view_element_type are:

• View
• Group
• Item,
• ViewElement
• ViewSubElement

Thus calling trait_views(View) is identical to calling
trait_views(). Note that the call sam.trait_views(Group)
returns an empty list, even though both of the Views defined in
SimpleEmployee contain Groups. This is because only named
elements are returned by the method.

Group and Item are both subclasses of ViewSubElement, while
ViewSubElement and View are both subclasses of ViewElement.
Thus, a call to trait_views(ViewSubElement) returns a list of
named Items and Groups, while trait_views(ViewElement)
returns a list of named Items, Groups and Views.

12-Sep-2007 107

Traits UI User Guide

11.1.2 trait_view()
The trait_view() method is used for three distinct purposes:

• To retrieve the default View associated with an object
• To retrieve a particular named ViewElement (i.e., Item, Group

or View)
• To define a new named ViewElement

For example:

• obj.trait_view() returns the default View associated with
object obj. For example, sam.trait_view() returns the View
object called traits_view. Note that unlike trait_views(),
trait_view() returns the View itself, not its name.

• obj.trait_view('my_view') returns the view element
named my_view (or None if 'my_view' is not defined).

• obj.trait_view('my_group', Group('a', 'b'))
defines a Group with the name my_group. Note that although
this Group can be retrieved using trait_view(), its name does not
appear in the list returned by traits_view(Group). This is
because my_group is associated with obj itself, rather than with
its class.

This last usage will be particularly useful in conjunction with
parameterized views once they are fully supported (see Section 5.5 on
page 26).

108 12-Sep-2007

Traits UI User Guide

Appendix I: Glossary of Terms
attribute: An element of data that is associated with all instances of
a given class, and is named at the class level.17 In most cases,
attributes are stored and assigned separately for each instance (for
the exception, see class attribute). Synonyms include “data member”
and “instance variable”.

 Bool: The trait type of a Boolean attribute.

Boolean: Having only True or False as possible values.

controller: The element of the MVC (“model-view-controller”)
design pattern that manages the transfer of information between
the data model and the view used to observe and edit it.

data member: Synonym for attribute.

dialog box: A secondary window whose purpose is for a user to
specify additional information when entering a command.

dictionary: A lookup table of the form:
{key1: value1, key2: value2, … key_n: value_n},

Dictionaries are a built-in type in the Python language. Values are
inserted and retrieved by key rather than by offset (as they would
be in Python lists or in C-style arrays).

editor: A user interface component for editing the value of a trait
attribute. Each type of trait has a default editor, but you can
override this selection with one of a number of editor factories
provided by the Traits UI package. In some cases an editor can
include multiple widgets, e.g., a slider and a text box for a Range
trait attribute.

editor factory: An instance of the Traits class EditorFactory. Editor
factories generate the actual widgets used in a user interface. You
can use an editor factory without knowing what the underlying
GUI toolkit is.

factory: An object used to produce other objects at run time
without necessarily assigning them to named variables or

17 This is not always the case in Python, where attributes can be added to individual
objects.

12-Sep-2007 109

Traits UI User Guide

attributes. A single factory is often parameterized to produce
instances of different classes as needed.

Group: An object that specifies an ordered set of Items and other
Groups for display in a Traits UI View. Various display options can
be specified by means of attributes of this class, including a border,
a group label, and the orientation of elements within the Group. An
instance of the Traits UI class Group.

Handler: A Traits UI object that implements GUI logic (data
manipulation and dynamic window behavior) for one or more user
interface windows. A Handler instance fills the role of controller in
the MVC design pattern. An instance of the Traits UI class Handler.

HasTraits: A class defined in the Traits package to specify objects
whose attributes are typed (i.e., whose attributes are “trait
attributes”).

instance: A concrete entity belonging to an abstract category such
as a class. In object-oriented programming terminology, an entity
with allocated memory storage whose structure and behavior are
defined by the class to which it belongs. Often called an “object”.

instance method: A method that is performed on (and called
through) a specific instance, usually using a syntax like
object1.do_this().18

instance variable: Synonym for attribute.

Item: A non-subdividable element of a Traits user interface
specification (View), usually specifying the display options to be
used for a single trait attribute. An instance of the Traits UI class
Item.

live: A term used to describe a window that is linked directly to the
underlying model data, so that changes to data in the interface are
reflected immediately in the model. A dialog box that is not live
displays and manipulates a copy of the model data until the user
confirms any changes.

livemodal: A term used to describe a dialog box that is both live
and modal.

MVC: A design pattern for interactive software applications. The
initials stand for “Model-View-Controller”, the three distinct

18 A method can, of course, have arguments. They are omitted from the sample syntax for
simplicity.

110 12-Sep-2007

Traits UI User Guide

entities prescribed for designing such applications. (See the
glossary entries for model, view, and controller.)

modal: A term used to describe a dialog box that causes the
remainder of the application to be suspended, so that the user can
interact only with the dialog box until it is closed.

model: A component of the MVC design pattern for interactive
software applications. The model consists of the set of classes and
objects that define the underlying data of the application, as well as
any internal (i.e., non-GUI-related) methods or functions on that
data.

nonmodal: A term used to describe a dialog box that is neither live
nor modal.

object: Synonym for instance.

object method: Synonym for instance method.

panel: A user interface region similar to a window except that it is
embedded in a larger window rather than existing independently.

predefined trait: Any trait type that is built into the Traits package.

regular expression: A way of specifying a set of strings by
encoding its syntax requirements as a single string rather than by
enumerating all its members.

subpanel: A variation on a panel that ignores (i.e., does not display)
any command buttons.

trait: A term used loosely to refer to either a trait type or a trait
attribute.

trait attribute: An attribute whose type is specified and checked by
means of the Traits package.

trait type: A type-checked data type, either built into or
implemented by means of the Traits package.

Traits: An open source package engineered by Enthought, Inc. to
perform manifest typing in Python.

Traits UI: A high-level user interface toolkit designed to be used
with the Traits package.

tuple: An ordered set of Python objects, not necessarily of the same
type. The syntax for tuples differs from that of Python lists in that

12-Sep-2007 111

Traits UI User Guide

parentheses are used (and , in some contexts, omitted) rather than
square brackets, e.g. tuple1 = ("hello", 3, True).

View: A template object for constructing a GUI window or panel
for editing a set of traits. The structure of a View is defined by one
or more Group or Item objects; a number of attributes are defined
for specifying display options including height and width, menu
bar (if any), and the set of buttons (if any) that are displayed. A
member of the Traits UI class View.

view: A component of the MVC design pattern for interactive
software applications. The view component encompasses the visual
aspect of the application, as opposed to the underlying data (the
model) and the application’s behavior (the controller).

ViewElement: A View, Group or Item object. The ViewElement
class is the parent of all three of these subclasses.

widget: An interactive element in a graphical user interface, e.g., a
scrollbar, button, pull-down menu or text box.

wizard: An interface composed of a series of dialog boxes, usually
used to guide a user through an interactive task such as software
installation.

wx: A shorthand term for the low-level GUI toolkit on which
TraitsUI and PyFace are currently based (wxWidgets) and its
Python wrapper (wxPython).

112 12-Sep-2007

Traits UI User Guide

Appendix II: Editor Factories for
Predefined Trait Factories

Trait Factory Default Editor Factory Other Possible Editor
Factories

Any TextEditor EnumEditor,
ImageEnumEditor,
ValueEditor

Array ArrayEditor (for 2-D arrays)

Bool BooleanEditor

Button ButtonEditor

CArray ArrayEditor (for 2-D arrays)

CBool BooleanEditor

CComplex,
CFloat, CInt,
CLong

TextEditor

Code CodeEditor

Color ColorEditor

Complex TextEditor

CStr,
CUnicode

TextEditor(multi_line=True) CodeEditor,
HTMLEditor

Dict TextEditor ValueEditor

Directory DirectoryEditor

Enum EnumEditor ImageEnumEditor

Event (none) ButtonEditor,
ToolbarButtonEditor

Expression TextEditor

File FileEditor

12-Sep-2007 113

Traits UI User Guide

Trait Factory Default Editor Factory Other Possible Editor
Factories

Float TextEditor

Font FontEditor

HTML HTMLEditor

Instance InstanceEditor TreeEditor,
DropEditor,
DNDEditor,
ValueEditor

Int TextEditor

KivaFont KivaFontEditor

List TableEditor for lists of
HasTraits objects; ListEditor
for all other lists.

CheckListEditor,
SetEditor, ValueEditor

Long TextEditor

Password TextEditor(password=True)

PythonValue ShellEditor

Range RangeEditor

Regex TextEditor

RGBAColor RGBAColorEditor

RGBColor RGBColorEditor EnableRGBColorEditor

Str TextEditor(multi_line=True) CodeEditor,
HTMLEditor

String TextEditor CodeEditor

ToolbarButton ButtonEditor

Tuple TupleEditor

UIDebugger ButtonEditor (button calls
the UIDebugEditor factory)

Unicode TextEditor(multi_line=True) HTMLEditor

114 12-Sep-2007

Traits UI User Guide

Trait Factory Default Editor Factory Other Possible Editor
Factories

WeakRef InstanceEditor

12-Sep-2007 115

	1Introduction
	1.1The Model-View-Controller (MVC) Design Pattern
	1.1.1The Model: HasTraits Subclasses and Objects
	1.1.2The View: View Objects
	1.1.3The Controller: Handler Subclasses and Objects

	1.2Structure of this Guide

	2Introduction to the View Object
	3The Building Blocks of a View
	3.1The Item Object
	3.1.1Subclasses of Item

	3.2The Group Object
	3.2.1Content of a Group
	3.2.2Group Attributes

	4Customizing a View
	4.1Specifying Window Type: the kind Attribute
	4.1.1Dialog Boxes: ‘modal’, ‘live’, ‘livemodal’, and ‘nonmodal’
	4.1.2Wizards
	4.1.3Panels and Subpanels

	4.2Command Buttons: the buttons Attribute
	4.3Other View Attributes

	5Advanced View Concepts
	5.1Internal Views
	5.1.1Defining a Default View
	5.1.2Defining Multiple Views Within the Model

	5.2Separating Model and View: External Views
	5.3Displaying a View
	5.3.1configure_traits()
	5.3.2edit_traits()
	5.3.3ui()

	5.4The View Context
	5.4.1Multi-Object Views

	5.5Include Objects

	6Controlling the Interface: the Handler
	6.1Backstage: Introducing the UIInfo Object
	6.2Writing Handler Methods
	6.2.1Overriding Standard Methods
	6.2.2Reacting to Trait Changes
	6.2.3Implementing Custom Window Commands
	6.2.3.1Actions
	6.2.3.2Custom Command Buttons
	6.2.3.3Menus and Menu Bars
	6.2.3.4Toolbars

	6.3Assigning Handlers to Views
	6.3.1Binding a Singleton Handler to a View
	6.3.2Linking Handler and View at Edit Time
	6.3.3Creating a Default View Within a Handler

	7Introduction to Trait Editor Factories
	7.1Specifying an Alternate Trait Editor Factory
	7.1.1Initializing Editors

	7.2Specifying an Editor Style
	7.2.1The ‘simple’ Style
	7.2.2The ‘custom’ Style
	7.2.3The ‘text’ Style
	7.2.4The ‘readonly’ style
	7.2.5Using Editor Styles

	8The Predefined Trait Editor Factories
	8.1Basic Trait Editor Factories
	8.1.1ArrayEditor()
	8.1.2BooleanEditor()
	8.1.3ButtonEditor()
	8.1.4CheckListEditor()
	8.1.5CodeEditor()
	8.1.6Color Editors
	8.1.6.1ColorEditor()
	8.1.6.2EnableRGBAColorEditor()
	8.1.6.3RGBColorEditor()
	8.1.6.4 RGBAColorEditor()

	8.1.7CompoundEditor()
	8.1.8DirectoryEditor()
	8.1.9EnumEditor()
	8.1.10 FileEditor()
	8.1.11 FontEditor()
	8.1.12 HTMLEditor()
	8.1.13ImageEnumEditor()
	8.1.14InstanceEditor()
	8.1.14.1Editing a Single Instance
	8.1.14.2Selecting Instances
	8.1.14.3Allowing Instances

	8.1.15KivaFontEditor()
	8.1.16 ListEditor()
	8.1.17NullEditor()
	8.1.18RangeEditor()
	8.1.19SetEditor()
	8.1.20ShellEditor()
	8.1.21TextEditor()
	8.1.22 TupleEditor()

	8.2Advanced Trait Editors
	8.2.1CustomEditor()
	8.2.2KeyBindingEditor()
	8.2.3TableEditor()
	8.2.3.1Specifying Columns
	8.2.3.2Managing Items
	8.2.3.2.1Organizing Items
	8.2.3.2.2 Filtering and Searching
	8.2.3.2.3Interacting with Items

	8.2.3.3Editing the Table
	8.2.3.3.1Adding Items
	8.2.3.3.2Deleting Items
	8.2.3.3.3Modifying Items

	8.2.3.4Defining the Layout
	8.2.3.5Defining the Format

	8.2.4TreeEditor()
	8.2.4.1Defining Nodes
	8.2.4.1.1A Node Type without Children
	8.2.4.1.2A Node Type with Children
	8.2.4.1.3Setting the Label of a Tree Node

	8.2.4.2Defining Operations on Nodes
	8.2.4.2.1Shortcut Menus on Nodes
	8.2.4.2.2Allowing the Hierarchy to Be Modified
	8.2.4.2.3Behavior on Nodes
	8.2.4.2.4Expanding and Collapsing Nodes
	8.2.4.2.5Editing Objects

	8.2.4.3Defining the Format

	8.2.5DropEditor()
	8.2.6DNDEditor()
	8.2.7ValueEditor()

	9Advanced Editor Concepts
	9.1Interacting with an Editor Through the UI Object
	9.1.1Accessing Trait Editors Using Item IDs
	9.1.2Controlling Editor Status Using ‘enabled’ and ‘disabled’

	9.2Defining a Custom Editor
	9.2.1Defining the Editor Factory
	9.2.1.1Standard Traits: format_str, format_func, is_grid_cell
	9.2.1.2Standard methods: init(), simple_editor(), custom_editor(), text_editor(), readonly_editor(), format_func()

	9.2.2Defining the Editor
	9.2.2.1Standard Traits: ui, object, name, old_value, description, control, enabled, factory, updating, value, str_value
	9.2.2.2Standard methods: init(), dispose(), update_editor(), error(), string_value(), save_prefs(), restore_prefs(), get_undo_item()

	10Miscellaneous Advanced Topics
	10.1The UI Object
	10.2The UIInfo Object Revisited
	10.3 Defining a Custom Help Handler
	10.4 Saving and Restoring User Preferences
	10.4.1Enabling User Preferences for a View
	10.4.1.1 The View id
	10.4.1.2 The Item ID

	11Tips, Tricks and Gotchas
	11.1Getting and Setting Model View Elements
	11.1.1trait_views()
	11.1.2trait_view()

