6.3.2 rings.integer_mod - Element of integers modulo n.

The module rings.integer_mod defines the following methods:

Mod( n, m)

Return the equivalence class of n modulo m as an element of $ \mathbf{Z}/m\mathbf{Z}$ .

sage: x = Mod(12345678, 32098203845329048)
sage: x
12345678
sage: x**100
1017322209155072

mod( n, m)

Return the equivalence class of n modulo m as an element of $ \mathbf{Z}/m\mathbf{Z}$ .

sage: x = Mod(12345678, 32098203845329048)
sage: x
12345678
sage: x**100
1017322209155072

The module rings.integer_mod defines the following classes:

class IntegerMod



Subsections
See About this document... for information on suggesting changes.