[maxread=user], [script_subdirectory=10000]) |
clear,
get,
ideal,
lib,
LIB,
list,
matrix,
new,
ring,
set,
string
Further documentation:
var) |
Clear the variable named var.
var) |
Get string representation of variable named var.
gens) |
Return the ideal generated by gens.
INPUT: gens -- list of Singular objects (or objects that can be made into Singular objects via evaluation) OUTPUT: the Singular ideal generated by the given list of gens
lib) |
Load the Singular library named lib.
lib) |
Load the Singular library named lib.
nrows, ncols, entries) |
sage: singular.lib("matrix.lib") sage: R = singular.ring(0, '(x,y,z)', 'dp') sage: A = singular.matrix(3,2,'1,2,3,4,5,6') sage: A 1,2, 3,4, 5,6 sage: A.gauss_col() 2,-1, 1,0, 0,1
x, [type=def]) |
Create an expect object X with given type determined by the string x. This returns var, where var is built using the Singular statement type var = ... x ...
The object X returned can be used like any SAGE object, and wraps an object in self. The standard arithmetic operators work. Morever if foo is a function then X.foo(y,z,...) calls foo(X, y, z, ...) and returns the corresponding object.
base, vars, [order=lp]) |
Create a Singular ring.
INPUT: base -- determines the base ring; e.g., an integer to to give the characteristic, etc. (see examples below) vars -- a string that defines the variable names order -- string -- the monomial order (default: 'lp') OUTPUT: a Singular ring
We first declare
with degree reverse lexicographic ordering.
sage: R = singular.ring(0, '(x,y,z)', 'dp') sage: R // characteristic : 0 // number of vars : 3 // block 1 : ordering dp // : names x y z // block 2 : ordering C
sage: R1 = singular.ring(32003, '(x,y,z)', 'dp') sage: R2 = singular.ring(32003, '(a,b,c,d)', 'lp')
This is a ring in variables named x(1) through x(10) over the finite
field of order
:
sage: R3 = singular.ring(7, '(x(1..10))', 'ds')
This is a polynomial ring over the transcendtal extension
of
:
sage: R4 = singular.ring('(0,a)', '(mu,nu)', 'lp')
This is a ring over the field of single-precision floats:
sage: R5 = singular.ring('real', '(a,b)', 'lp')
This is over 50-digit floats:
sage: R6 = singular.ring('(real,50)', '(a,b)', 'lp') sage: R7 = singular.ring('(complex,50,i)', '(a,b)', 'lp')
To use a ring that you've defined, use the setring() method on the ring. This sets the ring to be the ``current ring''. For example,
sage: R = singular.ring(7, '(a,b)', 'ds') sage: S = singular.ring('real', '(a,b)', 'lp') sage: singular.new('10*a') 1.000e+01a sage: R.setring() sage: singular.new('10*a') 3a
type, name, value) |
Set the variable with given name to the given value.
Instances of class Singular also have the following special methods:
__call__,
_create
Further documentation:
x) |
Send the code x to the Singular interpreter and return the output as a string.
See About this document... for information on suggesting changes.