12.2.3.1 ModularSymbolsSubspace Objects

class ModularSymbolsSubspace
Subspace of ambient space of modular symbols
ModularSymbolsSubspace( ambient_hecke_module, submodule, [dual_free_module=True], [check=None])

Instances of class ModularSymbolsSubspace have the following methods (in addition to inherited methods and special methods):

boundary_map,$  $ cuspidal_submodule,$  $ dual_star_involution_matrix,$  $ eisenstein_subspace,$  $ factorization,$  $ hecke_bound,$  $ is_cuspidal,$  $ is_eisenstein,$  $ star_involution

Further documentation:

boundary_map( )

The boundary map to the corresponding space of boundary modular symbols. (This is the restriction of the map on the ambient space.)

cuspidal_submodule( )

Return the cuspidal subspace of this space of modular symbols.

dual_star_involution_matrix( )

Return the matrix of the dual star involution, which is induced by complex conjugation on the linear dual of modular symbols.

eisenstein_subspace( )

Return the Eisenstein subspace of this space of modular symbols.

factorization( )

Returns a list of pairs $ (S,e)$ where $ S$ is simple spaces of modular symbols and self is isomorphic to the direct sum of the $ S^e$ as a module over the anemic Hecke algebra adjoin the star involution.

ASSUMPTION: self is a module over the anemic Hecke algebra.

star_involution( )

Return the star involution on self, which is induced by complex conjugation on modular symbols.

Instances of class ModularSymbolsSubspace also have the following special methods:

__repr__,$  $ _compute_sign_subspace

Further documentation:

_compute_sign_subspace( sign, [compute_dual=True])

Return the subspace of self that is fixed under the star involution.

INPUT:
    sign -- int (either -1 or +1)
    compute_dual -- bool (default: True) also compute dual subspace.
                    This are useful for many algorithms.
OUTPUT:
    subspace of modular symbols

See About this document... for information on suggesting changes.