Package sage :: Package rings :: Module laurent_series :: Class LaurentSeries
[show private | hide private]
[frames | no frames]

Type LaurentSeries

object --+    
         |    
   Element --+
             |
            LaurentSeries


Method Summary
  __init__(self, a, b, n)
Create a Laurent series.
  __add__(self, right)
  __call__(self, x)
Compute value of this Laurent series at x.
  __cmp__(self, other)
  __div__(self, right)
  __getitem__(self, i)
  __mul__(self, right)
  __neg__(self)
  __pow__(self, right)
  __radd__(self, left)
  __rdiv__(self, left)
  __repr__(self)
  __rmul__(self, left)
  __setitem__(self, i, value)
  __sub__(self, right)
  add_bigoh(self, prec)
  degree(self)
  is_zero(self)
  prec(self)
This function returns the n so that the Laurent series is of the form (stuff) + O(t^n).
  unit_part(self)
  valuation(self)
  variable(self)
    Inherited from object
  __delattr__(...)
x.__delattr__('name') <==> del x.name
  __getattribute__(...)
x.__getattribute__('name') <==> x.name
  __reduce_ex__(...)
helper for pickle
  __setattr__(...)
x.__setattr__('name', value) <==> x.name = value
  __str__(x)
x.__str__() <==> str(x)

Method Details

__init__(self, a, b=None, n=0)
(Constructor)

Create a Laurent series.

LaurentSeries(f)
   f: Polynomial, PowerSeries, or LaurentSeries

LaurentSeries(parent, f, n)
   parent: LaurentSeriesRing
   f: Polynomial, PowerSeries, or LaurentSeries
   n: int   (power of t)
Overrides:
sage.ext._element.Element.__init__

__call__(self, x)
(Call operator)

Compute value of this Laurent series at x.

prec(self)

This function returns the n so that the Laurent series is of the form (stuff) + O(t^n). It doesn't matter how many negative powers appear in the expansion. In particular, prec could be negative.

Generated by Epydoc 2.1 on Fri May 20 19:41:03 2005 http://epydoc.sf.net