Method Summary |
|
__init__(self,
parent,
value)
|
|
__abs__(self)
|
|
__add__(self,
right)
|
|
__cmp__(self,
other)
|
|
__div__(self,
right)
|
|
__float__(self)
|
|
__int__(self)
|
|
__invert__(self)
|
|
__long__(self)
|
|
__mod__ (self,
right)
Returns the int got by reducing a lift of this modulo right. |
|
__mul__(self,
right)
|
|
__neg__(self)
|
|
__pos__(self)
|
|
__pow__(self,
right)
|
|
__radd__(self,
left)
|
|
__rdiv__(self,
left)
|
|
__repr__(self)
|
|
__rmul__(self,
left)
|
|
__rsub__(self,
left)
|
|
__sub__(self,
right)
|
|
copy(self)
|
|
crt (self,
other)
Use the Chinese Remainder Theorem to find an element of the integers
modulo the product of the moduli that reduces to self and to other. |
|
is_square(self)
|
|
lift(self)
|
|
modulus(self)
|
|
order (self)
Returns the order of self. |
|
rational_reconstruction (self)
EXAMPLES: |
Inherited from object |
|
__delattr__ (...)
x.__delattr__('name') <==> del x.name |
|
__getattribute__ (...)
x.__getattribute__('name') <==> x.name |
|
__reduce_ex__ (...)
helper for pickle |
|
__setattr__ (...)
x.__setattr__('name', value) <==> x.name = value |
|
__str__ (x)
x.__str__() <==> str(x) |