Package sage :: Package pari :: Module py_pari_test
[show private | hide private]
[frames | no frames]

Module sage.pari.py_pari_test

Test Python-Pari
Function Summary
  foo0()
py_pari.pyx
  foo1()
Initialize the PARI system.
  foo2()
isprime(x, flag=0) Returns true (1) if x is a PROVEN prime number, and false (0) otherwise.
  foo3()
elladd(self, z1, z2): Sum of the points z1 and z2 on the elliptic curve self.
  foo4()
  foo5()
ellchangepoint(x,y)
  foo6()
ellheightmatrix(e,x)
  foo7()
ellinit(x,{flag=0}): x being the vector [a1,a2,a3,a4,a6], gives the vector: [a1,a2,a3,a4,a6, b2,b4,b6,b8, c4,c6, delta,j, [e1,e2,e3], w1,w2,eta1,eta2,area].

Function Details

foo0()

py_pari.pyx

foo1()

Initialize the PARI system.

INPUT:
    size -- long, the number of bytes given to PARI to work with
            (default: 100 000 000)
    maxprime -- unsigned long, upper limit on a precomputed prime
                number table  (default: 50000)

If you do not want prime numbers, put maxprime=2, but be careful
because many PARI functions require this table.  If you get the
error message "not enough precomputed primes", increase this
parameter.

foo2()

isprime(x, flag=0)
Returns true (1) if x is a PROVEN prime number, and false (0)
otherwise. 

INPUT:
    flag -- int 
            0 (default): use a combination of algorithms.
            1: certify primality using the Pocklington-Lehmer Test.
            2: certify primality using the APRCL test.
OUTPUT:
    gen -- 0 or 1

foo3()

elladd(self, z1, z2):

Sum of the points z1 and z2 on the elliptic curve self.

INPUT:
    self -- elliptic curve E
    z1 -- point on E
    z2 -- point on E
    
OUTPUT:
    point on E

EXAMPLES:
    >>> e = pari("ellinit([0, 1, 1, -2, 0])")
    >>> z1 = pari("[1,0,1]")
    >>> z2 = pari("[-1,1,1]")
    >>> e.elladd(z1, z2)
    [-3/4, -15/8]

foo5()

ellchangepoint(x,y)

change data on point or vector of points x on an elliptic curve according to y=[u,r,s,t]

foo6()

ellheightmatrix(e,x)

Returns the height matrix for vector of points x on elliptic curve e using theta functions.

foo7()

ellinit(x,{flag=0}): x being the vector [a1,a2,a3,a4,a6], gives
the vector: [a1,a2,a3,a4,a6,
            b2,b4,b6,b8,
            c4,c6,
            delta,j,
            [e1,e2,e3],
            w1,w2,eta1,eta2,area].
If the curve is defined over a p-adic field, the last six components
are replaced by root,u^2,u,q,w,0. If optional flag is 1, omit them
altogether.

Generated by Epydoc 2.1 on Thu Mar 31 12:00:07 2005 http://epydoc.sf.net