Home | Trees | Index | Help |
|
---|
Package sage :: Package modular :: Module dims |
|
Function Summary | |
---|---|
c0(n)
| |
c1(n)
| |
CO_delta(r,
p,
N,
eps)
| |
CO_nu(r,
p,
N,
eps)
| |
CohenOesterle(eps,
k)
| |
cXNp(n)
| |
The dimension of the space of cusp forms for the congruence subgroup group. | |
The dimension of the space of cusp forms of weight k and character eps. | |
dimension_cusp_forms_gamma0(N,
k)
| |
dimension_cusp_forms_gamma1(N,
k)
| |
The dimension of the space of eisenstein series for the given congruence subgroup. | |
Dimension of the new subspace of cusp forms of weight k and character eps. | |
Dimension of the p-new subspace of S_k(Gamma_0(N)). | |
Dimension of the p-new subspace of S_k(Gamma_1(N)). | |
The dimension of the new space of cusp forms for the congruence subgroup group. | |
eisen(p)
| |
g0(n)
| |
g1(n)
| |
gXNp(n,
p)
| |
Index of Gamma_0(N) in SL_2(Z). | |
Index of Gamma_1(N) in SL_2(Z). | |
mu0(n)
| |
mu1(n)
| |
mu20(n)
| |
mu21(n)
| |
mu2XNp(n,
p)
| |
mu30(n)
| |
mu31(n)
| |
mu3XNp(n,
p)
| |
mumu(N)
| |
muXNp(n,
p)
| |
S0(n,
k)
| |
S1(n,
k)
| |
ss0(n,
p)
| |
ss1(n,
p)
|
Function Details |
---|
dimension_cusp_forms(group, k=2)The dimension of the space of cusp forms for the congruence subgroup group. |
dimension_cusp_forms_eps(eps, k=2)The dimension of the space of cusp forms of weight k and character eps. INPUT: eps -- a Dirichlet character k -- int, a weight >= 2. OUTPUT: int -- the dimension EXAMPLES: >>> from sage.modular.dirichlet import * >>> G = DirichletGroup(13) >>> e = G.gen() >>> e.order() 12 >>> dimension_cusp_forms_eps(e,2) 0 >>> dimension_cusp_forms_eps(e**2,2) 1 |
dimension_eis(group, k=2)The dimension of the space of eisenstein series for the given congruence subgroup. |
dimension_new_cusp_forms(eps, k=2, p=0)Dimension of the new subspace of cusp forms of weight k and character eps. |
dimension_new_cusp_forms_gamma0(N, k=2, p=0)Dimension of the p-new subspace of S_k(Gamma_0(N)). If p=0, dimension of the new subspace. |
dimension_new_cusp_forms_gamma1(N, k=2, p=0)Dimension of the p-new subspace of S_k(Gamma_1(N)). If p=0, dimension of the new subspace. |
dimension_new_cusp_forms_group(group, k=2)The dimension of the new space of cusp forms for the congruence subgroup group. |
idxG0(n)Index of Gamma_0(N) in SL_2(Z). |
idxG1(n)Index of Gamma_1(N) in SL_2(Z). |
Home | Trees | Index | Help |
|
---|
Generated by Epydoc 2.1 on Mon Jun 20 15:43:21 2005 | http://epydoc.sf.net |