Package sage :: Module all
[show private | hide private]
[frames | no frames]

Module sage.all

nodoctest
all.py -- much of sage is imported into this module, so you don't
          have to import everything individually.

Function Summary
  arg(x)
  base_field(x)
  base_ring(x)
  basis(x)
  charpoly(x)
  CS(x)
  decomposition(x)
  det(x)
  ES(x)
  exp(x)
  factor(x)
  gens(x)
  hecke_operator(x, n)
  imag(x)
  image(x)
  j_invariant(x)
  kernel(x)
  log(x, b)
The log of x to the base b.
  NCMS(n, k, sign)
  ngens(x)
  norm(x)
  NS(x)
  one(R)
Return the one element of the ring R.
  order(x)
  OS(x)
  parent(x)
  pr(x)
  rank(x)
  real(x)
  rprint(x)
  show_identifiers()
Returns a list of the names of non-hidden (i.e., not starting with an underscore) identifiers defined by the user in this session.
  sqrt(x)
  zero(R)
Return the zero element of the ring R.

Variable Summary
ComplexField C = Complex Field
list iglob = ['polygen', 'QuaternionAlgebraWithDiscs', 'rando...
RationalField Q = Rational Field
RealField_mpf R = Multi-precision Real Field
IntegerRing Z = Integer Ring

Function Details

log(x, b=None)

The log of x to the base b.  The default base is e.

INPUT:
    x -- number
    b -- base (default: None, which means natural log)
OUTPUT:
    number

WARNING: In MAGMA, the order of arguments is reversed, so the
base is given first.   We use the opposite ordering, so the
base can be viewed as an optional second argument.

one(R)

Return the one element of the ring R.

show_identifiers()

Returns a list of the names of non-hidden (i.e., not starting with an underscore) identifiers defined by the user in this session. These are the identifiers saved by the save command.

zero(R)

Return the zero element of the ring R.

Variable Details

C

Type:
ComplexField
Value:
Complex Field                                                          

iglob

Type:
list
Value:
['polygen',
 'QuaternionAlgebraWithDiscs',
 'random',
 'sage',
 'VectorSpace',
 'PariRing',
 'rational_reconstruction',
 'Rational',
...                                                                    

Q

Type:
RationalField
Value:
Rational Field                                                         

R

Type:
RealField_mpf
Value:
Multi-precision Real Field                                             

Z

Type:
IntegerRing
Value:
Integer Ring                                                           

Generated by Epydoc 2.1 on Fri Jun 24 17:58:45 2005 http://epydoc.sf.net